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Abstract

Instability waves have been established as the dominant source of mixing noise

radiating into the downstream arc of a supersonic jet when the waves have phase veloc-

ities that are supersonic relative to ambient conditions. Recent theories for supersonic

jet noise have used the concepts of linear instability wave theory for predicting radiated

noise. If the mean flow is known, the stability characteristics of the normal modes are

obtained for a supersonic jet at each axial location. The axial variation of these charac-

teristics represents a growing and decaying instability wave in the jet shear layer. The

noise radiated by this instability wave is determined by a matching process between the

inner instability wave solution and the outer acoustic solution. This analytical technique

is extended to the prediction of noise radiation from supersonic coaxial jets.

The instability wave noise generation analysis requires a known mean flow. The

mean flow of supersonic coaxial jets are not described easily in terms of analytic functions.

To provide mean flow profiles at all axial locations, a numerical scheme is developed to

calculate the mean flow properties of a coaxial jet. The Reynolds averaged, compressible,

parabolic boundary layer equations are solved using a mixing length turbulence model.

Empirical correlations are developed to provide the shear layer spreading effects due

to velocity and temperature ratios and Much number. Both normal velocity profile and

inverted velocity profile coaxial jets are considered with the mixing length model modified

in both cases to obtain reasonable results when the two stream jet merges into a single

fully developed jet. The mean flow calculations show good qualitative and quantitative

resemblance to measured single and coaxial jet flows.

The analytical and numerical analyses are used to conduct a parametric study

of supersonic coaxial jets. The results from mean flow and stability calculations are

used to predict the noise radiation from coaxial jets with different operating conditions.

Comparisons are made between different coaxial jets and to a single equivalent jet with

the same total thrust, mass flow, and exit area. The area ratio for the coaxial jets is held

constant. Results indicate that normal velocity profile jets can have noise reductions

compared to the single equivalent jet, especially if the outer jet stream is hotter than the

inner jet stream. No noise reductions are found for inverted velocity profile jets operated

at the minimum noise condition compared to the single equivalent jet. However, it is

inferred that changes in area ratio may provide noise reduction benefits for inverted

velocity profile jets.
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Chapter 1

INTRODUCTION

The renewed interest in the development of a High Speed Civil Transport that is

economically viable and environmentally compatible has re-energized research efforts on

supersonic jet noise. This noise issue was addressed intensely in the supersonic transport

program during the 1960's. The large funding level provided resources for large scale

design and testing of jet nozzle hardware as well as facilities for small scale controlled

experiments and for theoretical studies. When the program was abruptly terminated

in 1971, the large scale design effort stopped, Stitt [1990]. However, a low level generic

research program continued through the 1970's allowing small scale experiments and

theoretical studies to advance the ideas that were beginning to appear (NASA [1969]

and Goldstein [1976]). By the 1980's, funding levels were a small fraction of past levels

as interest in supersonic jet noise issues waned. This lasted until 1987 when the United

States government recognized the need to set national goals to maintain leadership in

the increasingly competitive world of aviation. As described in a review by Darden et al.

[1993], among these goals was an increase in research and development in supersonic

transport technology. Given the history and the technical issues to be addressed in the

High-Speed Research Program, NASA initiated in 1990, the community noise problem

generated by supersonic jets is still a strong research motivator. To meet FAR 36 Stage

3 noise regulations (FAA [1990]), noise suppression technology will need to be advanced

beyond current levels.

Virtually, since the beginning of jet aircraft transportation service, community

noise created by jet exhausts has been a problem, Burns [1973]. Expanding service and

increased awareness of noise pollution has only exacerbated the problem. The propen-

sity to litigate, Bennett and Hoover [1991], and regulate, Linn and Tedrick [1991], the

noise problem to a satisfactory resolution, without hampering the economic benefits of

jet aircraft transportation, will not lead to a satisfactory public accommodation of jet

aircraft without understanding the jet noise generation process. It is, as Lighthill [1954]

wrote, "...largely as a result of the public odium with which the aircraft industry is

threatened on account of the noise of jet aeroplanes" that a large number of experimen-

tal and theoretical studies have been performed on jet noise over the last 40 years. Thus,

there is a continuing interest to understand the jet noise generation process, particularly

those processes that are important to supersonic jet noise. Basic understanding leads to



meansthat may modify the noise generation process and provide acceptable community

noise levels from supersonic jet aircraft.

This paper examines a method to modify the noise generation from a supersonic

jet. A single, supersonic, axisymmetric jet with given initial velocity and temperature

conditions is replaced by a dual stream, coaxial jet with different initial velocities and

possibly different initial temperatures. At least one of the jet streams is supersonic. For

classification purposes, when the coaxial jet flow has a higher inner stream velocity than

an outer stream velocity, the jet is referred to as a normal velocity profile jet. If the outer

stream velocity is higher than the inner stream, the jet has an inverted velocity profile.

The jet stream temperatures do not enter into this classification. Thus, a normal velocity

profile jet can have a normal temperature profile or an inverted temperature profile as

can occur for an inverted velocity profile jet, also.

The study combines analytical and numerical techniques. The analytical tech-

nique is based on the theory that instability waves propagating in the jet shear layer

at phase velocities that are supersonic relative to ambient are the dominant sources of

mixing noise radiating in directions downstream from the jet. The mean flow of the

supersonic jet is assumed to be perfectly expanded; thus, shocks are not considered in

this study and the noises associated with them are ignored in the analysis. To complete

the analytical solution, the developing mean flow properties must be known at every

axial location. Due to the complexities of des,:ribing developing normal and inverted

profile jets with various velocity and temperatare conditions, the mean flow is deter-

mined numerically. Before describing these techniques in more detail, we first consider

the emergence of the role of instability waves as a source of supersonic jet mixing noise

and some experimental history on axisymmetric coaxial jets.

1.1 Instability Waves in Jets

The instability ors shear layer has long been recognized. Rayleigh [1877] discussed

the analysis of a plane vortex sheet separating two fluids moving with different velocities.

Based on earlier work by Helmholtz in 1868 and Kelvin in 1871, Rayleigh showed that

for this ideal case of a vortex sheet separating frictionless fluids, the motion was always

unstable and the instability increased with an increase in the frequency of the distur-

bance. However, he recognized that this result did not agree with experiments. Small

jets that were seen to have sensitivities to sound at lower frequencies ceased showing any

sensitivity to higher frequencies. He pointed out that the presence of fluid friction would

immediately broaden the fluid discontinuity represented by the vortex sheet. As the

fluids moved, the transition between them becomes more gradual, until at a transition

layer width comparable to the wavelength of a disturbance, the previous analysis became



inapplicable.Rayleighre-analyzedthe problemfor finite thicknessshearlayersand, as-

suming a frictionless fluid, developed an equation which was subsequently named after

him; the Kayleigh equation. A number of simple flows were considered, both bounded

and unbounded flows, using piecewise-linear approximations to describe the mean flow.

These problems involved temporal stability and, basically, the analysis showed that as

the shear layer grew, the instability increased with disturbance wavelength, reached some

maximum value, and then decreased until neutral stability occurred. The shear layer was

then not affected by the disturbance. Experimental evidence at the time was collected

from jets with a flame or with smoke. The jet responded to acoustic excitation with

the most sensitive position at the nozzle exit. The behavior of the jet was characterized

visually as having gradually increasing sinuosity until the jet disintegrated.

Progress in the study of the instability of shear layers, or hydrodynamic stability,

may be found in the texts by Lin [1955] and Drazin and Reid [1981]. With observations

like Kayleigh's involving the jet disintegrating, these works study the instability of par-

allel shear flows as a means of transition from laminar to turbulent flows. Many studies

were conducted to confirm that free shear flows were unstable in the inviscid limit due to

the presence of a point of inflection in the mean velocity profile. In addition, the initial

growth rates of the instability in shear flows compared well with predictions from linear

stability theory. After transition, statistical methods were used in attempts to describe

the turbulent jet flow.

Initially, the study of noise from turbulent jets was dominated by the theory devel-

oped by Lighthill [1952]. The fundamental equations of fluid motion were manipulated

to isolate terms that represented the fluctuating stresses created in a localized region

of space in a moving fluid. These fluctuating stresses became the source terms for the

sound that propagated into the surrounding medium at rest. The theory resulted in the

important scaling law that the total sound power radiated by the jet is proportional to

the eighth power of the jet velocity. This theory was aggressively studied theoretically

and much experimental work was conducted to verify it during the 1950's, 60's, and

?O's as evident in reviews by NASA [1969], Crighton [1975], and Goldsteln [1976]. More

recently, Lilhy [1991] has summarized, in some detail, the current status of the classical

jet noise theory. Though the Lighthili approach applies to both subsonic and super-

sonic jets, after the early 1970's the growing recognition of the presence of large scale

structures in shear flows and their representation as instability waves led to alternative

theories for noise generation by supersonic jets.

Evidence began to mount that large structures and orderly patterns existed in

turbulent jet flows. Puffs and vortices with length scales on the order of the shear

layer thickness were observed. The benchmark papers by Crow and Champagne [1971]

and Brown and Roshko [1974] confirmed the presence of large coherent structures in

turbulent flow. The photographs in Brown and Roshko [1974] showed them dearly.
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Furthermore,whenCrowandChampagne[1971]subjectedthe turbulentjet to periodic
forcing, hot-wire measurements showed that a wave was generated in the flow with

initially growing characteristics that were in accord with linear stability theory. Thus,

the large scale orderly structures were seen as having wave-like characteristics and the

description of the structures as vortices or waves was considered complementary for

turbulent free jets.

At the same time, proposals of the connection between large scale structures or

instability waves and the noise radiation of perfectly expanded supersonic jets began

to appear. Use of the Lighthin formulation had led to the concept of eddy Mach wave

radiation where the turbulent eddies were convected at speeds greater than the ambient

speed of sound (Goldstein [1976]). Though qualitative results were achieved, the true

nature of the sound sources were still concealed. A representative attempt to model

the sound sources as instability waves is found in Liu [1971]. Rather than using the

Lighthill acoustic analogy, Liu built on the concept of splitting the flow quantities in the

compressible equations of fluid motions into mean, periodic, and turbulent components

to develop integral equations representing energy transfer between the components. The

local mean flow was used to calculate the local amplification rates, phase speeds, and

shape functions of the instability wave. The global amplitude of the wave versus axial

distance was then found through the energy integrals. The instability wave was found to

travel supersonically with an amplitude that peaked within the shear layer and decayed

with distance perpendicular to the shear layer. These remnants of the instability wave

outside the jet were used by Lin [1974] to calculate the near field noise generated by the

jet. Liu suggested that the near field fluctuations resulting from instability wave analysis

could be used in the Lighthill integral to represent the source terms for far field noise

calculations. Care would have to be taken on the positioning of an imaginary cylinder

placed around the jet on which the fluctuations were calculated and on the proper use

of the retarded potential.

Tam [1971] took a more simplified appr_mr_h to the early study of the radiation

of sound by instability waves in supersonic jets. Modeling the jet with a cylindrical

vortex sheet simplified the governing disturbance equations to a wave equation outside

the jet and a convected wave equation inside with appropriate kinematic and dynamic

boundary conditions between the two regions. An asymptotic solution outside the jet

resulted in directional characteristics similar to those observed in shadowgraphs of su-

personic jets. An extension of the theory modeled the mean flow as having a periodic

flow structure, Tam [1972]. Disturbances would interact with this flow structure and

large scale spiral-mode instabilities would be triggered at resonant conditions. The peak

frequency of the jet power spectrum was predicted from this resonant condition and



foundto agree favorably with measured power spectra of perfectly expanded cold super-

sonic jets. Later, this resonant condition theory was dropped from the theory of noise

radiation from perfectly expanded jets, Tam [1975].

While these early supersonic jet noise theories were based on shadowgraphic evi-

dence and near field acoustic measurements. It still remained to experimentally establish

the link between large scale coherent structures and the noise radiation from supersonic

shock free jets. The difficulty was in the inability of delicate instruments to measure the

stability characteristics in supersonic jet shear layers. Some of these problems were over-

come by conducting measurements in a low Reynolds number environment (McLaughlin

et al. [1975, 1977] and Morrison and McLaughlin [1979, 1980]) and later extending

measurements to moderate Reynolds numbers (Troutt and McLaugtdin [1982]). At low

Reynolds number, it was clearly established that the rapid growth of instability waves

and their decay near the end of the potential core contributed to the major portion of

the sound radiated. Initial instability wave growth rates and phase velocities agreed

with linear theory and spectra peaks, sharply defined, had Strouhal numbers that ap-

propriately agreed with the instability wave source. As Reynolds number increased, the

spectra broadened but still peaked at the appropriate Strouhal numbers. Also, the in-

stability wave characteristics still agreed with theory. Results at high Reynolds number

were then inferred as being due to the same mechanism. While for the most part these

measurements showed that the instability wave noise radiators traveled with phase ve-

locities that were supersonic relative to the ambient speed of sound, there were examples

of subsonic traveling waves that radiated noise from low Mach number jets. Though the

experimental results were not always clearly understood at the time, they did lead to

refinements to the models given in Tam [1975], Morris and Tam [1977], Tam and Morris

[1980] and Tam and Burton [1984a]. Most of this latter history was recently summarized

in Tam [1991].

1.2 Axisymmetric Coaxial Jets

The interest in the measurement of the noise radiated from coaxial jets increased

as the by-pass jet engine was introduced as an alternative propulsion system to the

noisy turbojet engine. Early results were inconclusive as to whether or not any varia-

tion in the outer stream velocity had any affect on the radiated noise, Greatrex [1961].

Kantarges and Cawthorn [1964] found that a cold outer stream added to a cold inner

stream increased the noise. While a cold outer stream added to a hot inner stream

seemed to have little impact on the noise. With the consensus that the noise reduction

in by-pass engines was due to lower velocities at the same mass flow compared to single

jets, Williams et al. [1969] measured noise reductions in cold coaxial jets at constant

thrust. In addition to the noise reduction noted earlier, these results included reductions
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dueto the decreasein themeanshearof the combinedflow. It is interestingto notethat

at constantthrust, themaximumreductionoccurredat aboutU2/U 1 = 1. Alternatively,

by simply increasing the outer velocity U2 for a fixed inner velocity U1, the maximum

noise reduction occurred at a velocity ratio of 0.5. This apparent noise reduction was

confirmed by Eldred et at. [1971] and Dahlen [1972]. The latter noted reductions in

high frequency noise including the peak of the jet noise spectrum and an increase in low

frequency noise. Olsen and Priedman [1974] conducted a wide ranging study of coaxial

nozzles and flow conditions. Their results showed minimum noise levels at velocity ratios

of 0.4 to 0.5 with variations apparently due to changing area ratios. The shape of the

far field spectra from subsonic coaxial jets were basically the same as single jets. Hence,

only the peak frequency and level needed to be correlated with velocity ratio and area

ratio. Thus, for subsonic jets, there appeared to be lower noise benefits in using coaxial

jets with normal velocity profiles.

The apparent noise reduction benefits of two stream coaxial jets operating in

subsonic conditions was convincing enough to look for shnilar benefits under supersonic

conditions. Dosanjh and his colleagues conducted an extensive experimental study of

supersonic coaxial jets. Using small scale nozzles, Dosanjh et al. [1969, 1970] and Yu

and Dosanjh [1971] optically observed, measured, and documented the existence of a

minimum noise condition for shock containing coaxial jets. They found that when the

outer nozzle pressure ratio was fixed above critical, the inner nozzle pressure ratio could

be increased from no flow conditions to some point where the measured overall sound

power level was a minimum less than the outer jet atone. For higher inner pressure ratios,

the noise increased. This minimum noise condition always occurred for inner nozzle

pressure ratios less than the outer nozzle pressure ratios indicating that the coaxial jet

operated with an initial inverted velocity profile. The optical shadowgraphs showed that

the outer stream repetitive shock structure was destroyed at the minimum noise condition

and replaced by a composite shock structure just downstream of the nozzle exit. Hence,

the overall noise reduction was primarily due to a decrease in shock associated noise.

The minimum noise condition depended on nozzle geometry with inner nozzle pressure

ratios varying from 2.22 to 2.63.

Further studies on a larger scale coaxial supersonic nozzle were conducted and

the results are detailed in Ahuja [1976], Bassiouni [1976] and Shutiani [1976]. They

confirmed the existence of a minimum noise condition and noted that downstream of

the composite shock structure, the shocks were very weak or nonexistent indicating that

the flow was similar to a properly expanded flo_ °. Noise reductions were measured at all

frequencies and at all angles. This would mean that not only was shock noise reduced,

which dominates in the upstream direction, but that mixing noise was reduced as well,

which dominates in the downstream direction. It was also found that directivity patterns

could be changed by the choice of pressure and temperature operating conditions.



Tannaet al. [1979] conducted measurements of shock-free coaxial jets with in-

verted velocity profiles to study the effects of profile shaping in jet mixing noise. In

addition, care was taken in choosing initial velocity and temperature conditions along

with exit area in order to compare results on a constant thrust, mass flow, and exit

area basis to a fully mixed equivalent single jet or reference jet. They found that high

frequency noise increased at all angles and that low frequency noise decreased at an-

gles closer to the jet exit axis. These changes were relative to the reference jet and

they became larger as the velocity ratio increased above 1. Far field spectra remained

largely unchanged by higher temperature ratios for a coaxial jet with both velocities the

same. Since the far field spectra were peaking at the lower frequencies, the overall sound

pressure levels were quieter for U2/U 1 > 1 at smaller angles and noisier at 90 degrees.

The higher frequency noise was generated primarily from the outer shear layer before

the streams merged. As U2/U 1 increased, the outer shear layer had a larger velocity

difference to ambient resulting in higher eddy convection velocities, higher source veloc-

ities, and more noise. Conversely, the lower frequency noise was generated downstream

of merging where the velocities were lower, resulting in less noise. Similar results were

measured by Maus et al. [1980]. They concluded that the rapid decay of the maximum

mean velocity in inverted velocity profile jets was a prominent reason for noise reduction

compared to the reference jet.

After examining the shock-free, inverted profile coaxial jet data, Tanna [1980] re-

examined some of the normal velocity profile data, discussed earlier, and compared the

results to a reference jet at the same thrust, mass flow, and exit area. His conclusion was

simply that normal profile coaxial jets, with both inner stream velocity and temperature

greater than the outer stream, are noisier than the reference jet. A systematic study of

normal velocity profile jets conducted by Tanna and Morris [1985] using the approach

of Tanna et al. [1979] confirmed this conclusion. Given the constraint of constant exit

area, one stream will always have a velocity higher than the reference jet in order to

maintain constant total thrust and mass flow. Since the maximum velocity of a normal

profile jet persists longer than the maximum velocity of an inverted profile jet, then

in a LighthiU sense the normal velocity profile jet would generate more noise than the

inverted profile jet.

The experimental work on coaxial jets was continued by Tanna et al. [1985] into

the supersonic regime. The converging nozzles were operated above critical pressure

ratios resulting in underexpanded, shock-containing jet flows. They also defined a min-

imum noise condition based on overall sound pressure level measurements at upstream

angles where shock associated noise dominates. For a fixed outer nozzle pressure ra-

tio above critical, minimum noise was found when the inner nozzle pressure ratio was

slightly above critical at about 1.9. Depending on the initial velocities and temperatures

of the two jet streams, this condition was found to hold for both inverted velocity profiles
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and normal velocityprofiles.Tam and Tanna [1985]discussedthe differenceswith their

basicallyfixedminimum noiseconditioninnernozzlepressureratioand the varyinginner

nozzlepressureratioof Dosanjh et al. They concluded that the differencesare due to

nozzleshape,definitionof minimum noise,and interpretationof the phenomena.

With the shock associatednoisevirtually_ated and schlierenphotographs

showing the destructionof the outer jet repetitiveshock structureat minimum noise

conditions,Tanna et al.[1985]measured the remaining mixing noise at downstream

anglesto the jetaxis.Testconditionsofconstantthrust,mass flow,and exitarea,along

with the added conditionthattheinnerstream be slightlysupersonicto achieveminimum

noisedue to shocks,were used to setthe coaxialjetinitialvelocitiesand temperatures.

As was found for shock-freecoaxialjets,normal velocityprofilejetswere noisierthan

the referencejet and invertedvelocityprofilejetswere quieterbased on overallsound

pressurelevelmeasurements at 30 degreesto thejetaxis.

Much of the data from reportsdiscussedabove have been used to develop mod-

elsfor predictingnoiseradiationfrom coaxialjets.Noise measurements from different

nozzlesat differentconditionsprovided data forempiricalmodels, Stone [1977],Stone

et al.[1979]and Stone et al.[1983],and correlations,Pao [1979].A more theoreticalap-

proach based on turbulencemodeling and Lightlfill'sindependent noiseproducing eddies

was proposed by Chen [1976].A turbulencemodel was used in calculatingmean flow

properties that were the only quantities needed for the acoustic calculations. A more

elaboratetheoreticalmodel was proposed by Balsa and Gliebe [1977]and Gliebe and

Balsa [1978].They used turbulencemodeling topredictboth mean flow and turbulence

variables.With a model forthe acousticsourceof an elementaljet volume based on lo-

calturbulenceproperties,theseresultswere used in Lilley'sequationto predictfarfield

radiatednoiselevelsand spectra.Gliebe et al.[1991]recentlysummarized thismodel

and made comparisons to variousjetnoisesuppressionnozzles.These models tend to

agreefavorablywith measured data sincethey allcontainfactorsthat were derivedfrom

measured data. As an alternativeto these models, we calculatenoise radiationfrom

instabilitywaves propagatinginthe shear layer_of supersoniccoaxialjets.

1.3 Theoretical Considerations

Instability waves have been established as noise generators in supersonic jets when

they have phase velocities that are supersonic relative to ambient. When the jet is

perfectly expanded, this mixing noise has a radiation pattern with a dominant peak in

the downstream arc of the jet. Even when shocks are present in the jet flow, the noise

from the jet that radiates into the downstream arc is primarily due to mixing; whereas,

the broadband noise associated with shocks dominates in the upstream arc of the jet.

Extensive measurements have shown this for single jets, Tanna [1977], and for coaxial



jets,Tannaet al. [1981]. Hence to a first approximation, we could conduct an analysis of

the mixing noise in the re_ion where it dominates even if shocks were present in the flow.

However, since this is a first analysis of the instability wave noise generation model in

supersonic coaxial jets, we assume the coaxial jets are perfectly expanded or, if not, the

jet operating conditions are set for minimum noise where the flow has the characteristics

of perfect expansion downstream of a composite shock structure near the nozzle. This

simplifies the analysis and allows us to concentrate on profile shaping as a means to

further reduce the mixing noise. Many of the ideas behind this analytical approach are

given in the references already cited. We use these ideas in the extension of this approach

to mixing noise generation from supersonic coaxial jets. An extension of this analysis

to include the effects of a weak shock structure and the generation of broadband shock

associated noise could conceivably follow the approaches for mean flow in Tam et al.

[1985] and for shock noise in Tam [1987].

To begin the analysis, the jet flow is decomposed into three parts: mean flow,

instability waves, and fine scale turbulence (Lin [1974]). At the nozzle exit, the kinetic

energy in the mean flow dominates the energy balance between the three components.

Energy flows from the mean flow into the instability waves and into the fine scale turbu-

lence with the fine scale turbulence being the mechanism that primarily dissipates the

energy. The interaction between these components is complicated and simplifications

are made to enable a solution to be obtained. In general, the interaction between the

mean flow and the instability waves has energy transfers in both directions. As the

instability waves grow, they extract energy from the mean flow. In turn, their growth

modifies the mean flow, transferring energy back to the mean flow, which again affects

the instability wave growth rates, and so on. In addition, the energy transfer to the

fine scale turbulence acts to diffuse the mean flow and decrease instability wave growth

rates. We assume that these effects on the mean flow are included in a separate mean

flow calculation. Chapter 2 discusses the mean flow calculation using a turbulence model

that takes into account the modification to the mean fiow by the instability waves and

the dissipation caused by the fine scale turbulence. The model includes the necessary

condition that a coaxial jet initially has two shear layers with differing length scales. As

the flow progresses downstream, the shear layers grow in width and eventually merge

until a single fully developed jet shear layer exists.

In Chapter 3, the instability waves are assumed to be governed by the linearized,

inviscld, compressible equations of motion. As noted earlier, thin free shear layers con-

raining an inflection point in the mean velocity profile are inherently unstable even in

the absence of viscosity. The wave initially grows rapidly. As the shear layer grows,

the instability wave growth rate decreases. Eventually, the shear layer is too thick to

support unstable waves and the wave amplitude decreases until it disappears. The effect

of fine scale turbulence on the instability waves and the interaction between instability
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wavesandother disturbancemodesareassumedto be lessimportant than the spread-
Lugof the mean flow in controlling growth and decay rates of an instability wave. Fine

scale turbulence would dissipate the energy in the instability waves; a process not dearly

understood. Previously, the fine scale turbulence was included as an effect on diffusing

the mean flow which, in turn, effects instability wave growth and decay. Hence, even if

the instability wave is modeled inviscidly, it is indirectly affected by the fine scale tur-

bulence through the mean flow. Its direct effect is neglected. The interaction between

instability waves generates harmonics. In our model where a single frequency wave is

followed through its spatial growth and decay, at maximum growth its harmonics are still

small and have little impact on the noise generated (Tam and Burton [1984a]); hence,

these interactions are neglected, too. In addition, the analysis assumes that the distur-

bances are small in order to linearize the equations resulting in no interactions between

the instability waves and other disturbance modes such as those due to temperature

fluctuations.

For slowly diverging jet flows, two solutions are created that apply to separate but

overlapping regions. The inner region includes the jet flow and the immediate region just

outside the jet. Since the flow grows slowly in the axial direction, the rates of change in

the axial direction are much less than those in the radial direction. In effect, the flow is

nearly constant over the region that significant changes take place in the radial direction.

This weak coupling between length scales is used by the method of multiple scales to

develop an asymptotic expansion of the governing equations. To lowest order, the inner

solution is the locally linear instability wave. The higher order solutions obtained after

using the method of variation of parameters acco auts for the effect of the slowly diverging

mean flow.

The instability waves in the inviscid model are inflectional instabilities of the

Kelvin-Helmholtz type. They have been shown to be the dominant instabilities in the

jets of interest in this study (Tam et al. [1992], Seiner et al. [1993]). As shown in Tam

and Hu [1989], there are other waves traveling in the shear layer that have subsonic and

supersonic phase velocities. In the inviscid limit, the Kelvin-Helmholtz waves are ana-

lytically continued from growing to damped waves. These other waves become neutrally

stable without viscosity and do not become damped downstream. Since they do not

contribute to peak noise, they are not considered here. The damped Kelvin-Helmholtz

waves are found for both subsonic and supersoric phase velocities as described in Tam

and Burton [1984b]. This approach removes the boundedness condition for the inner

solution at infinity where the inner solution is not valid anyway, Tam and Morris [1980].

In the outer region, which slightly overlaps the inner region, the governing equa-

tions are controlling disturbances that are acoustic in nature. The acoustic disturbances

have the same length scales in all directions; hence, all coordinates are treated equally.

The outer solution is created in a form that allows it to be asymptotically matched to
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the inner solutionin the overlapregion.Thesematched asymptotic expansions provide

the outer boundary condition for the inner solution and the inner boundary condition

to the outer solution. To lowest order, we get the solution to the near field pressure dis-

turbances just outside the jet. This solution is extended to the far field using stationary

phase analysis to obtain the directivity pattern for the jet. The full analysis for this

instability wave noise generation model involves a large amount of algebraic manipula-

tion. This paper provides an outline of the solution in Chapter 3 with some additional

algebraic details in related appendices.

The analytical and numerical analysis provided the means to conduct the para-

metric study of supersonic coaxial jets presented in Chapter 4. We chose a reference

single stream jet with operating conditions that would be typical for a supersonic trans-

port aircraft engine exhaust. From these conditions, we defined the operating conditions

for supersonic coaxial jets that have the same total thrust, total mass flow, and total exit

area as the reference jet. The study of normal velocity profile jets allowed variations in

both velocity ratio and temperature ratio between the two jet streams to be controlled

separately. Thus, the variation in velocity ratio could be studied with the temperature

ratio fixed and vice versa. The study of inverted velocity profile jets was conducted with

operating conditions set for minimum noise. Temperature ratios, in this case, could not

be varied independent of the velocity ratio. Once the operating conditions were defined,

all the numerical results for each case were dependent upon them. The calculation of far

field directivity and the near field pressure disturbances depended on the calculation of

the instability waves in the different shear layers that depended on the calculation of the

mean flow that used the operating conditions to define the initial flow profiles. Chapter

4 discusses this train of dependencies and the final impact on the noise generated at se-

lected frequencies. Finally, Chapter 5 discusses the conclusions that can be drawn from

this study and makes suggestions for further work.



Chapter 2

12

CALCULATION OF THE

MEAN FLOW DEVELOPMENT IN A

COMPRESSIBLE COAXIAL JET

This chapter discussesthe methodology used to calculatethe mean flow devel-

opment of a compressible,coaxialjet.As illustratedin Figure 2.1,the mean flow from

a coaxialjet nozzle can have eithera normal velocityprofileor an invertedvelocity

profile.The normal velocityprofilejetischaracterizedby a high velodty inner stream

surrounded by a lower velocityouter stream, Figure 2.1(a).For the invertedvelocity

profilejet,the inner stream has the lower velocityand itis surrounded by the higher

velocityouterstream,Figure2.1(b).Both subsonicand supersonicconditionsare calcu-

lated.When the jetexitconditionsare supersonic,thejet staticpressureismatched to

the ambient pressure;hence,the flowisperfectlyexpanded. The approach isnumerical

with many simplifyingassumptions used inthe governingequations.These assumptions

alsolead to the need for a turbulencemodel to closethe set of governing equations.

It should be noted that the goal ofthispart of the work isto calculatethe mean flow

propertiesofa coaxialjet,eitherwith a normal initialvelocityprofileorwith an inverted

initialvelocityprofile,that expands and merges inan orderlyfashionin the downstream

axialdirection.The absoluteaccuracy of the c:alculatedmean flows compared to any

particularsetofmeasured data issecondarytowhether or not the calculatedresultsbear

a strong qualitativeresemblance to the behavior of coaxialjet flows.In practice,the

predictions,when compared to availablemeasurements, show reasonable quantitative

agreement.

For the most part, in the past, the calculation of instability waves in a single

axisymmetric jet have used analytic functions to characterize the mean flow. These ana-

lytic functions have been based on results from experimental measurements where data

were plotted using local similarity variables. Examples of this approach include the mea-

surements of Lau et al. [1979] whose data were fitted by an error function profile, Cohen

and Wyguanski [1987] who fitted data to a sexies of hyperbolic tangent functions, to

add corrections to the classical hyperbolic tangent profile, and Morrison and McLangh-

]in [1980] who fitted data to a half-Gaussian profile. Michalke [1984] summarized the

use of different analytic functions in the calculation of instability waves. The measured

data typically include only velocity profile results which are sufficient for incompressible

instability wave calculations. When compressibility is important, the instability wave
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calculations require that either the temperature or the density profile be specified. Of-

ten, the approximation has been made that allows the Crocco Relation to be used. This

defines the temperature or density profile to be a function of the velocity. See, for exam-

ple, Schlichting [1979], White [1974], and Michalke [1984]. Example velocity and density

profiles for subsonic and supersonic single jets are shown in Figures 2.2 and 2.3. These

figures show numerical results, using the procedure to be described in this chapter, com-

pared to calculated hyperbolic tangent velocity profiles (Michalke [1984] Eq. 9) and the

corresponding density profile from the Crocco Relation. Good comparisons are made

for both isothermal jets (Figure 2.2) and hot jets (Figure 2.3) showing the usefulness of

the Crocco Relation in single jet instability wave calculations. Thus, with mean profile

informationanalyticallydefined,the mean profilevariablesand alltheirderivativesare

availableat allpointsin the radialdirectionfor the numerical calculationofinstability

wave characteristics.Furthermore,theseanalyticfunctionsare continuousintothe com-

plex plane which allowsthe calculationof damped inviscidwaves as describedin Tam

and Morris [1980].(Furtherdetailson damped inviscidwave calculationswin be given

later.)Thus, the use of analyticfunctionsto describethe mean flowhas simplifiedthe

study of singlejetinstabilitywaves.

When it comes to a coaxialjet,itis not clearhow to properly apply analytic

functionsto describetheprofileat allaxiallocations.For a singlesupersonicjet,Tam and

Burton [1984a]used a generalizedhalf-Gaussianfunctionto describethe mean velocity

at allaxiallocations.The function parameters, centerlinevelocity,core radius,and

half-widthof the mixing region,were definedby cubicsplinefitsto measured data. The

densityprofilewas found by keeping the totaltemperature constant. This approach

was possibledue to the availabilityof measured data. There islittlemeasured data

for coaxialjets,especiallywith supersonicconditions,that would allow an analytical

descriptionto be made at allaxiallocationsincludingthe merging regionof a normal

profileand an invertedprofileintoa singlejet. Miles [1986,1987] calculatedinstability

waves for normal profilecoaxialjetsusing analyticfunctionsto fitvelocityprofilesat

selectedaxiallocationswhere measurements were availablefrom a subsonicjet. Such

an approach did not produce usefulinformationon the axialdependence ofthe function

parameters. Thus, profilescouldnot be generatedat axiallocationswhere measurements

were not made. Furthermore, whereas temperature profileshave been measured in a

subsonic jet,they are not typicallymeasured in a supersonicjet. So, even though

velocitymeasurements may be availablefor coaxialjetswith supersonicconditions,it

is doubtful that Crocco's Relation could provide the appropriatetemperature profiles

foreithernormal or invertedconditions.Thus, the decisionwas made to generatemean

profilesforcoaxialjetsnumerically.Morris [1980]and Morrisand Baltas[1981]calculated

instabilitywaves usingnumericallygeneratedvelocityprofilesfora singleincompressible
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inverted velocity profile coaxial jet
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jet. Soit is not new to usenumericallygeneratedprofiles. The extensionhere is to

include compressibility effects into the spreading and merging of a coaxial jet.

2.1 Equations for Compressible Flow

The compressible flow of a free jet is governed by the continuity, momentum, en-

ergy, and state equations. To solve these equations numerically in their original unsteady

form would overly complicate our problem. Hence, following the discussion in Anderson

et al. [1984], we assume the flow development of an axisymmetric free jet is governed by

the boundary layer equations for compressible flow that have been Reynolds averaged;

since the flow is also assumed to be turbulent. The flow variables are decomposed into a
I

time averaged or mean value part and a fluctuating or turbulent part. (E.g., p = _ % p

where the overbar denotes the time averaged part and the prime denotes the fluctuating

part.) The following approximations are used:

1. The mean flow is steady.

2. The mean pressure is constant in the jet and equal to ambient pressure.

3. u>>vand_rr>>_.

4. plul << _ and pI Ht << _H.

The equations in axisymmetric coordinates reduce to:

continuity:

momentum:

energy:

,,p_)+ _(,,p_ = o

PU_-x +P_Br - rBr r Pr Br +u 1-_r P_r-

where _ is a mass averaged quantity defined as

For simplicity,

definitions of all the symbols are found in the Symbol List.

We assume a perfect gas. Thus, the state equation is:

(2.1)

(2.2)

(-)_.= 1_Pv+ p'v' . (2.4)
P

overbars have not been used on mean values in (2.1)to (2.3). The
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state:

p=pR T
g (2.5)

Also, the laminar viscosity is related to temperature according to Sutherland's Law.

/_ =/_o T -I- S1
(2.6)

I !
In (2.2)and (2.3), the Reynolds stress term -Fuv and the Reynolds heat flux

term -pc vIT l are undefined. These terms must be modeled in order to solve the sys-

tem of equations. In looking ahead to the difficulties in defining a turbulence model that

would work for a supersonic coaxial jet with normal or inverted initial velocity profiles

and streams of different temperature (An example of the difficulties in turbulence mod-

eling for single stream supersonic jets is found in Dash et al. [1992].), it was decided to

use the most basic model, namely the mixing length model, for turbulence. Any tur-

bulence model chosen for these calculations would require modification and calibration

to obtain reasonable results for both normal and inverted profile coaxial jets. Since, as

mentioned previously, this study was not an attempt, primarily, to make accurate mean

flow predictions, the mixing length model represented the turbulent stress from which an

effective viscosity was defined. Through the use of a turbulent Prandtl number to relate

eddy diffusivities for heat and momentum, an effective Prandtl number was calculated

from the effective viscosity.

In the mixing length model, the Reynolds stress term is written as (Sctdichting

[1979], Anderson et al. [1984])
I I _t

- P"" = (2.7)
and the heat flux term as

PrT 0r"
(2.8)

Substituting_2.7)and (2.8)into(2.2)and (2.3)and usingthe definitionfortotalenthalpy

H = c T + u_/2, we get formomentum and energy:
p

Ou _Ou 1 0 rl_eff-_r+ - ; 8-; (2.9)

where

Pu'-_'z+ Pv-_'r = r_r [rpreff Or + r /_eff-Preff
(2.10)

/Zeff =/_ + s_T (2.11)



19

and

P= (2.12)

Equations (2.9)and (2.10)areofthe same form as thosefound in Pal [1954]and are the

basisfor the numerical work of Patankar and Spalding [1970]and Crawford and Kays

[1976].

With the turbulentPrandtlnumber PrT essentiallyconstantforfreejet calcula-

tions(See Schlichting[1979],NASA [1972],Anderson et ah [1984],Crawford and Kays

[1976]),the mixing lengthmodel isembodied in the turbulentviscosity;

(2.13)

where L isa characteristiclengthscaleand C 1 and C 2 are the mixing length constants;

however, forthismodel, they arefunctionsof the flowconditionsas describedpresently.

It isknown that the growth of a shear layerdepends on the flow conditionsat

the shear layeredges with velocitiesand densitiesof the two streams being of primary

interest.(See Schlichting[1979],Birch and Eggers in NASA [1972],Brown and Roshko

[1974],Papamoschou and Roshko [1988]). This dependence occurs whether the flow

is compressibleor incompressible.Papamoschou and Roshko [1988]and othershave

normalized the compressibleshear layergrowth rateby an incompressiblegrowth rate

value at the same edge conditionsin an attempt to separateout purely compressible

effects.This followedfrom work by Brown and Roshko [1974]thatshowed the effectsof

differentvelocityand densityedge conditionson shear layergrowth forincompressible

flows.Thus, in order toincorporatethe effectsofedge conditionsintothe mixing length

model toget the proper shearlayergrowth,two factorshave been developedthat depend

on the flowconditions;one forincompressibleconditionsand the other forcompressible

conditions.

The factorC 1isthe incompressiblepartofthe mixing lengthconstant.Itdepends

on the velocityratior - U2/U 1 and the densityratio8 --p2/p Ibetween the two streams

eithersideofthe shearlayer.Equationsforthe expected vorticitythicknessgrowth rate

have been developed by many investigatorsfrom experimental evidence. Thus, given

that we know the vorticitythicknessgrowth ratefor a fixedr and s, we adjusted the

C 1 factor(C2 setto 1) untilthe calculatedinitialvorticitythicknessgrowth rate of a

singlejet agreedwith the predictedvalue.Continuing thisprocessfora range of r and

s valuesresultedin a seriesof calibrationcurvesforC 1. A more detaileddiscussionis

givenin Appendix A.

The C 2 factoristhe compressiblepartofthe mixing lengthconstant.Itspurpose

isto decreasethe growth of the shearlayeras compressibilityeffectsbecome important.
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It depends on a Ms_h number in a relative frame of reference convecting with the real

phase speed of a growing disturbance in the shear layer. This convected Mach number

depends on r and s and on the Mach number of one of the streams. Experimentalists have

used the convected Mach number in attempts to correlate normalized measured growth

rates of compressible shear layers. We developed an equation that fits this correlated

data in order to predict shear layer growth rates for given flow conditions. Thus, we

proceeded to calibrate the C 2 factor given that C 1 is allowed to take on its previously

calibrated value for the given r and 8. C 2 _s adjusted until the calculated initial

vorticity thickness growth rate agreed with the predicted value. For this case, a single

calibrating curve was generated. Again, details are discussed in Appendix A.

There are a few different choices for the characteristic length scale for a jet shear

layer. Since the/tow is turbulent and the motion is dominated by large structures or

instability waves, an appropriate characteristic length scale would be (Brown and l_oshko

[1974] and Morris [1976])
AU

l -- (2.14)
IO./arlm "

f defined in this way can be interpreted as a vorticity thickness. If necessary, it can be

related to other length scales by using an appropriate functional shape for the velocity

profile. For example, t = .978b where b is defbaed as the shear layer width from the

location where (u- U2)/AU = .9 to the location where (u- U2)/Z_U = .1 and u is
defined by an error function.

2.1.1 Numerical Formulation

Many numerical techniques are available for the solution of the boundary layer

equations. (See Anderson et al. [1984] and _rhite [1974]). Any one of which could

have provided adequate mean flow results; but our criterion for mean flow calculations

dictated that the mean flow results be sufliciertly resolved in order to be used in the

instability wave calculations to be discussed later. Furthermore, we wished not to be

bothered with any numerical calculation of the _ term in (2.9) and (2.10). Hence, we

initially followed the stream function approach given by Patankar and Spalding [1970]

and Crawford and Kays [1976].

Equations (2.9) and (2.10) are transformed to stream function coordinates using

8_ 8_

rpu = _'r and rp_" = - O'--x'" (2.15)
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These equations insure that continuity (2.1) is satisfied. The transformation from (z, r)

coordinates to (z, 9) coordinates is completed by using

in (2.9) and (2.10) to get

8 8 88 099 88 _09

09- = ÷ 09N09-7 = -
88 88 88z 88 099 88
88'-_"- 88z 88r + 099 88r - r,ou_-_-

09u_ 09 [ 09u]09z 099 r2puPeff_ " (2.16)

09H 09 [r2nu Peff + r2pu 2 (2.1T)

These equations can be differencedin a varietyof ways; explicitlyas in Maxini and

Pletcher[1975],implicitlyon an evenly spaced _-grid as in Donovan and Todd [1967],

or transformed to a normalized g--gridand implicitlydifferencedas in Patankax and

Spalding [1970].Each of thesenumerical methods were found to have problems. The

explicitDuFort-Frankel method, M_Ini and Pletcher [1975],haxistabilityproblems.

The implicitCrank-Nicolson method usingan evenlyspaced _--_id,Donovan and Todd

[1967],could not provideenough resolutionat the outerlow speed edges of the jet.And

Patankar and Spalding'smethod had problems with entrainment boundary conditions

at the outer edge. Each ofthese problems were overcome by using fullyimplicitdiffer-

encingand what isconsideredto be naturalgridstretchingand naturalouter boundary

entrainment. By choosinga fullyimplicitmethod, the numericalproblem isinherently

stable.The problem ofgridresolutionissolvedby using an evenlyspaced r-grid.The

outer boundary conditionwillbe discussedlater.

The choiceof an evenly spaced r--gridresultsin an unevenly spaced _-grid. In

essence,the _-grid isstretched,but in a manner thatisnaturalto the k_--gridwith more

gridpointsat the outer edge where finergridspacingisdesired.From (2.15)

d_ = rpu dr.

Integrating this across one grid spacing

jfkk_ld_ = Jkk_l rpudr

we get

1 [(rp_) k ÷ (rpu)k_l ] _r (2.18)
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after using the trapezoidal rule. One consequence of (2.18) is that u cannot be zero

outside the jet or A_ would go to zero. To get close to quiescent outer conditions, the

free stream velocity was set to 1% of the initial highest velocity.

Writing (2.16) as

[ Ou] (2.19)@x - 05

wh_e
2

A = r Fu_eff,

we implidtly difference this momentum equation using the grid shown in Figure 2.4 as

follows:

(2.20)
The A coefficient is the average of adjacent grid values

1

A +½-- +

Collecting terms, equation (2.20) is arranged into tridlagonal form

(2.21)
where

2Ax
= , (2.22)

2A_ . (2.23)
A_ -- (A,k+l + 4,,)A.k+ 1

Equation (2.17)is differencedin the same manner. The resultingtridiagonal

equation is

= ttj,_ (2.24)
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where

and

2
B = r purr s,

D = r2pu 2 Pelf prdf

2.1.2 Boundary Conditions

Since the problem is axisymmetric, a symmetry boundary condition is enforced

at r = O, k = 1; that is
Ou OH

0"_ ----_- "-0. (2.25)

The righthand sideof(2.19)isdifferencedusing halfthe gridspacingat the edge. (See

Figure 2.4)

j+1,1+½

From the boundary condition (2.25), the (j + ], 1) term on the right side is zero. The

finaltridiagonalform is

_ _I + 2AZ A _ 2AZA u

[\ _222 l+½]Ul - ---'=_-2 1+1 2 Uj, l"A_2 _ Jj+l =

(2.26)

Similarly, we get for energy

[' 2Ax Jr 11 + 2Az._-7-=__2DI+ 1 u 1
I A'2 ' x _Bl+½fl H1

2Az ½ 2Ax 2 }.-':-_.2DI+ u2 BI+½R = Hi,1. (2.27)

The outerboundary conditionissimply r.hatthe u and H valuesmust equalfree

stream conditions.To put italgebraically,

Uj+l,N+ 1 = uj,N+ 1 = Uoo

Hj+I,N+I = _',/V-l-i-" Hc¢" (2.28)

This also may be viewed as saying that the derivative in the z-direction is zero at

the outer edge. The consequence of this type of boundary condition is that the flow,
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expanding outward due to diffusion, can never reach the outer grid boundary or the

calculations will be in error. The way this is handled is discussed in the next section.

2.1.3 Methodology of Numerical Solution

Equations (2.21), (2.24), (2.26), (2.27), and (2.28) when put together create a 2 × 2

block tridiagonal system for k = 1 to N -t- 1 where N is the number of grid spacings.

The system can be solved by standard block tridiagonal routines such as that given

in Anderson et al. [1984]. The coefficients A, B, and C are unknown at the j-/- 1 location

since they are functions of the unknowns Uj+l, k and Hi+l, k. Consequently, iterations
must be made to complete the solution for each axial step. The procedure is as follows:

I. Guess Uj+l, k and %+l,k"

If j - 1, then use the initial conditions.

u2, k = Ul, k

H2, k = H1, k

For j > 1, we can extrapolate from previous solutions.

- 2 j,k- b-l,k
- - Hi_ ,

2. Solve for j + 1 values of p, Petf' Preff"

3. Calculate the A_j+I, k grid using equation (2.18).

4. Solve the block tridiagonal system for new values ofuj+l, k and Hi+l, k. Also, new

values of p, Peff' Preff are calculated.

5. If the difference between the new solution and the previous solution is smaller

than some convergence criterion, then this axial step is completed. Otherwise, the

iteration process continues at step 3.

To insure, as mentioned previously, that the outer boundary condition is not

compromised by the expanding flow, the grid must be large enough in the radial direction

to encompass the flow. Rather than making the grid so large that the flow is encompassed

at all axial locations, the outer edge of the initial grid is much closer to the outer edge

of the jet, typically the grid ends at twice the outer radius of the initial jet. As the flow

expands downstream, the outer edge of the jet flow is tracked until it is within some

arbitrary distance from the outer edge of the grid. At which time, more grid points are
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addedto the solution. All the variablesat the new grid points take on the free stream

values that are assumed to always exist outside the grid. As the shear layer of the jet

expands, it becomes possible to increase the A?--grid spacing since less grid points are

necessary to well define the shear layer as was initially necessary for a thin shear layer.

Thus, we do not simply continue to add grid points as the flow expands, but we can,

from time to time, reduce the number of grid points by increasing the grid spacing.

It was best to simply double the grid spacing so that the extrapolated guess for new

variables occurred along constant grid fines in the z--direction. Thus, no interpolation

was necessary.

2.2 Single Jet Examples

Before discussing the modifications to the mixing length model for the coaxial

jet, we first look at some results from single jet examples to see how well the calibrated

mixing length model works.

Figure 2.5 compares numerical calculations to data taken from Zaman [1986]

for a subsonic, M = 0.5 axisymmetric jet. The axial variation of centerline velocity

is shown in Figure 2.5(a). The calculations show good comparison to data and to an

equation for center]ine velocity from Witze [1974] based on correlating many different

jet measurements. Figure 2.5(b) shows the growth of jet half velocity width and the

ratio of jet half velocity width to momentum thickness. The calculations underpredict

the spread of the jet as defined by the half velority width.

Calculations for a Mach 1.37 jet are shown in Figure 2.6. The centerline velocity

data are taken from Lau et al. [1979] (Figure 2.6(a)) and the half velocity point data

is from Lau [1981] (Figure 2.6(b)). The calculated core region spreads at the measured

rate though the measured core length is slightly shorter than predicted.

Results for a higher speed jet, Mach 2.22, are shown in Figure 2.7. The comparison

for centerline velocity and jet half velocity point is made with data from Eggers [1966].

The calculations underpredict the spreading of the jet. These results show a problem

that exists with using the compressible calibration curve in Figure A.3. Any jet data

results that lie above the calibration curve will have its growth underpredicted by the

calculations. This is the case for the initial spreading rate measured by Eggers. The

Lau data, shown in Figure 2.6 lies much closer to the calibration curve; hence, there

is better agreement between calculated and measured jet spreading. The comparison

with Zaman's data could also be affected by this problem. As with many other tries at

turbulence modeling, the results are only as gc_d as the calibration and it is difficult

to generally apply the model to varied problem,s. The turbulence model was calibrated

to match growth rates in the initial core region of a jet, the region of most importance

to growing instabilities. In the downstream region, the jet is a wide axisymmetric shear
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layer and the current turbulence model, based on thin shear layer results, provides less

representative growth rates.

The final comparison is for a single jet in a moving stream. These results are

important to the future consideration of coaxial flow jets in the effect of Mach number

and the effect of velocity ratio on jet spreading characteristics. Figure 2.8(a) shows the

effect of velocity ratio on the centerline velocity. The data are from Morris [1976]. The

good agreement shows that the turbulence model has the jet spreading less and increasing

the core length as the velocity ratio increases from .096 to .497. The Mach number effect

at a velocity ratio of about .1 is shown in Figure 2.8(b). Again, there is good agreement

as the Mach number increases from .47 to 1.67. Hence, the turbulence model allows the

calculated jet behavior to mimic the expected jet behavior for a compressible jet in a

co-flowing stream.

2.3 Coaxial Jet Mixing Length Model

Initially, a coaxial jet, either with an initial normal velocity profile or an inverted

velocity profile, has two distinct shear layers with uniform flow conditions at both edges

of both shear layers. As a result, the mixing length model, equation (2.13), gives separate

constant values C1, C2, and t for each shear layer. The C 1 and C 2 factors depend on

the velocity ratio, the density ratio, and the convected Mach number determined from

the separate edge conditions. The characteristic length l is determined for each shear

layer from (2.14). The turbulent viscosity PT is then calculated across the coaxial jet

using local values of p and I@u/arl. Note that the separate shear layers have different

constants (C1, C 2, l) so that at some point between the two shear layers, the PT profile
must switch from one set of constants to the other set. As illustrated in Figure 2.9 for

a normal velocity profile, an abrupt change in the PT profile, exaggerated in the figure,

occurs that is not numerically desirable. Initially, lau/ar] is near zero between the two

shear layers and the effect of the abrupt change is negligible. As the calculations progress

downstream, I_u/_r I between the two shear layers increases magnifying the negative

effects of the abrupt change. Therefore to avoid this problem, a smooth hyperbolic

tangent function is used to transition from one set of constants to the other set. This

works until the outer jet core is about to disappear and the shear layers are about to

start merging together. At that point, the mixing length model must be altered and the

normal and the inverted velocity profile cases treated separately.

2.3.1 Normal Velocity Profile Mixing Length Model

The normal velocity profile mixing length model was developed by observing the

behavior of the u and au/ar profiles as the shear layers merged and by comparing

calculations to measured data taken from Lan [1980]. The merging shear layer profile
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Figure 2.9. Illustration of smoothing turbulent viscosity profile. (a) typical normal
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contains a local minlmnm in lau/arJ that disappears as the shear layer fully merges into

a single jet, see Figure 2.10. This local minimum is used as a point to separately identify

the two merging shear layers. A single characteristic length for the merging shear layers

is defined as
AU

l = max (2.29)

where AU is the largest AU between the two values determined by using the sepa-max

ration point. The C 1 and C 2 factors are also determined from the edge conditions that

gave us AUma x. The maximum gradient I_u/arlmax is the largest value of ]_u/_r I that

occurs in the merging profile. This approach for determining C1, 6'2, and l for a merging

normal profile has the advantage that as the flow transitions into a single jet profile, the

C1, C2, and t factors transition into the appropriate form for a single jet.

A comparison of calculated velocity profiles to measured data (Lau [1980]) at

four axial locations is shown in Figure 2.11. Initially, the two profiles are very similar.

Downstream, deviations increase between calculated and measured profiles. But, in

essence, the calculations produce a reasonable merging jet for an initial normal velocity

profile.

Whereas the normal velocity profile mixing length model was formulated by com-

paring results to the Lau [1980] data, yon Glahn et al. [1984] has data not considered in

the mixing length model fomulation. We compare these latter measurements to both

velocity profile (Figure 2.12) and temperature profile (Figure 2.13) calculations at five

axial locations. The experimental initial conditions are not dearly known, hence the

discrepancy in the initial inner core results and subsequent flow development. Never-

theless, the calculated mean velocity and temperature profiles show merging and decay

with axial distance in a manner similar to the measured data.

2.3.2 Inverted Velocity Profile Mixing Length Model

When an inverted profile starts to merge, it is obvious that a local maximum

occurs in the velocity profile yielding au/_r = 0, see Figure 2.14(a). This point is used

to identify the separation point between the two shear layers. As long as the inner core

exists, the two merging shear layers are treated separately but their constants are added

as follows:

+
This increasesPT acrossthe profileto mimic the increasedturbulent action as the

invertedprofilestartsto merge. When the inner coreends,equation (2.30)isno longer

used and itisassumed that the mixing processin the outer shearlayer dominates the

flow, hence (C1C2l)total = (CiC2l)outer , see Figure 2.14(b). As with the normal

profile, this later usage of C1, C2, and t transitions into the proper usage for a single



34

(a)

mm

r
AU1

AUmax = max(AUl _U2)

AU2

CO) _ .................

II _ ......

I
I

Idu/ddmax '
I

I I

rain

AU1

AU2

(c) .

J

AU

Figure 2.10. Definitions of merging normal velocity profile mixing length model factors.
(a) initial merging profile; (b) advanced mergiu_ profile; (c) fully merged profile



35

1.0

0.8

0.6
0.4

0.2

0.0

1.0 t

0.8

0.6
0.4

0.2

0.0
0

1.0

0.8

0.4

0.2

0.0

I I i

x/R_, 1=4

I I I

1 2 3 4

0

• I " I ' I '

CG C

, I , I , I •

10 20 30 40 50

x/R1

I I I

__ffFtl =16

I I I

x/R1 = 32

i I , I , I ,

0 1 2 3 4
r/R1

-- Calculations
0 Data

Figure 2.11. Comparison of normal velocity profile jet calculations to measured data.
Data from Lau [1980]. Figures show four radial velocity profiles at four axial locations

and one centerline velocity plot. Operating conditions: U 1 = 411 m/s, T 1 = 657 K, R 1

= 1.96 cm; U 2 = 274 m/s, T 2 = 292 K, R 2 = 3.91 cm.



36

x/R1 =16

_. , axison of _or_nal.vel _-Y_--, five radial velocx_y P-v"i' rT - 314
yl_e 2.12. C_a_ et a,l _.198A1" _'lg_'es s-u: ,-r, = 1029 K, R 1 = 5.0;5 cm, _2

m/s, T 2 - 248 K, R 2 = 8.80 cm.

...___ C=tculations

oData

1.00 oO_

0.8

0.6
0.4

0.2 4

0.0 1 2
0 r/R1



3?

1200

1000

800

_" 600

4OO

2OO

1200

1000

..-, 800

P" 600

4O0

2OO

1200

1000

.-, 800

600

400

20O

O

O

I i i

O

O

i i i

I

, I ,

0 1

! ' I

• _:11=2

I I '
I-

I

x/R1 =16

I i I i i I , I i

i I I I I

xJR1 = 4 x/R1 = 26

I , I ,

! • i •

X/I:11=8

, I , I , I ,

0 1 2 3
r/R1

Calculations
OData

I , I ,

2 3

r/R1

Figure 2.13. Comparison of normal velocity profile jet calculations to measured data.

Data from yon Glahn et al. [1984]. Figures show five radial temperature profiles at five

axial locations for operating conditions given in Figure 2.12.



38

jet downstream. It should be noted that the mixing length model gives PT -- 0 at the
local maximum, which is unrealistic. The simple solution taken here was to smooth the

18u/_r I profile, and hence smooth PT; a process discussed in Appendix B.

The inverted profile data from Lau [1980] is used for comparison to calculations.

These were the primary data used for designing the inverted profile mixing length model.

Figure 2.15 shows good velocity profile comparisons at four axial locations. The cen-

terline velocities do not compare very well but the experimental data are questionable

since centerline values do not agree between the centerline velocity plot and the center-

line velocities in the radial profile plots. Further comparisons with data not involved in

the design process for this mixing length model are shown in Figures 2.16 and 2.17 for

velocity and temperature profiles, respectively, measured at five axial locations by yon

Glahn et al. [1986]. Another set of comparisons with data from Tanna et al. [1979] are

shown in Figures 2.18 and 2.19. For both sets of data, qualitative agreement is seen for

both velocity and temperature profiles. Thus, the calculations are capable of producing

a reasonable merging jet with an initial inverted velocity profile.

2.4 Summary

In this chapter, a steady, turbulent boundary layer code has been formulated to

calculate the mean flow development of a compressible, coaxial jet. Mean flow properties

were generated for coaxial jets with either a normal initial velocity profile or an inverted

initial velocity profile that expanded and merged in a manner representative of measured

data. These mean flow results are now to be used to calculate instability wave charac-

teristics for coaxial jets. As discussed in the next chapter, the instability waves are the

dominant sources for near field pressure fluctuations and far field radiated sound.
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THE INSTABILITY WAVE AND

SOUND FIELD SOLUTION

In the introduction, we discussed the background for using spatially growing in-

stability waves in a model for sound generation in supersonic jets. This chapter describes

in more detail the equations that govern the development of the instability waves in these

jets and their identification as sources of noise radiated to the far field. The formulation

follows the approach of Tam and Burton [1984a] with the addition of a nonzero free

stream velocity, Tam [1989]. Solutions are created that apply to separate but overlap-

ping regions as illustrated in Figure 3.1. In the inner region, equations are developed

that apply to the slowly diverging jet and its immediate environs. These equations are

described first in this chapter. After a multiple scales expansion, the result to lowest

order is a description of the instability wave in terms of its local growth rate and phase

speed. Next, the outer solution is developed after rescaling the governing equations

since the disturbances in the outer region are acoustic in nature and they travel in all

directions with equal length scales. This is followed by the matching process, where the

inner and outer regions overlap, that completes the description of the instability wave to

lowest order. We then develop expressions for the near field pressure fluctuations and the

far field directivity pattern. Finally, after describing the numerical procedures used to

complete the calculations, we verify our procedures by comparing our calculated results

to measurements from single and coaxial jet experiments.

3.1 Linearized Equations of Motion

The linearized equations of motion for small disturbances are derived from the

momentum:

÷ V*" (p*V*_ = 0 (3.1)
0t* k /

followingcompressible,inviscidequationsofmotion:

continuity:
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Cl_>C

Instability Wave - c_

Inner Region

r

S:£X

BC x

Figure 3.1. Schemstic illustrsting inner and outer regions of matched asymptotic solu-
tion. Inner region including the jet flow is outlined by s thin dashed line. Outer region
outlined by a thin solid line outside the jet.
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energy:

state:

p* = p*R*T* (3.4)
g

where • denotes a dimensional quantity. It is convenient to combine the state and energy

equations, and including the thermodynamic relation h* = c'T*, to getp

_P* V'p*
•_- + V* • + 7p'V* • V* = 0

(3.5)

where continuity has been used to eliminate the density p*, and 7 appears from the

relation Cp/Rg = 7/(7 - 1). This results in a reduction of the governing equations to

(3.1), (3.2), and (3.5). These equations are made dimensionless by using

U. V* * *
V = R.V* t=t *-L V=_ p=P--- p- p

R U. pj 2j 3 pjU_

where all terms with subscript j are defined at the jet exit. The resulting dimensionless

equations have the same form as the dimensional equations, hence we simply drop the •

from our notation.

To linearize these equations, we let

t
p=-;+ p

V=V+V'

P = _+pl

(3.6)

where the overbar denotes a mean flow quantity and the prime denotes a fluctuating

quantity, in this case, a small amplitude instability wave. Substitute equations (3.6) into

the dimensionless forms of (3.1), (3.2), and (3.5). After expanding terms, subtracting

the equations governing the mean tiow quantities, and neglecting higher order terms

containing products of fluctuating quantities, we get the linearized equations

Op
+ V. vp'+ v'.v_+ _v .vJ+ p'v.V = o (3.T)

!

ov'_ v' '0--7-+ v. vv' + •vV + p -_vp (3.8)
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0p I _
+ V- Vp t + 7PV. V _ + 7p_V - V = 0. (3.9)

These equations have included the conditions that the mean flow is steady and that

for a free jet, the mean static pressure is constant throughout the flow. Taking into

consideration that the mean pressure is nondimensional and constant, it is easy to show
#t

that 7P = 1�Mr. • where M. is the jet exit Ma_h number.
' j

3.2 Inner Solution to Lowest Order

A cylindricalcoordinatesystem centeredon the nozzleexit,asshown inFigure3.2,

isused foraxisymmetricjets.The cylindricalcoordinates(r,0,x) have correspondingve-

locities(v,w, u). For supersonicjets,the mean flowchanges slowlyin the axialdirection

and isrepresentedby (Tam and Burton [1984ai)

v= (3.10)

Outside the jetas r --.oo,the ambient mean flowconditionsare

"P-Poo"

(3.11)

The e in (3.10) represents the rate of sprea_l of the jet mixing layer which is small for

supersonic jets and, hence, • is the small parameter of the problem.

To construct the inner solution, we transform the axisymmetric coordinates (r, x)

to (r, 8) where s = ex is the slow coordinate. Following Tam and Burton [1984a]

and Whitham [1974], the fluctuating disturbances are represented as an asymptotic se-

ries of waves traveling through a nonuniform medium which in this case is the mean flow

of the jet.

p'(r,O,x,t)

v'(r,O,x,t)

w'(r,S,x,t)

_'(r,O,x,t)
p'(r, 0, x, t)

oo

m-'O

/_rn(r, 8)

_m(r, 8)

l_m(r, 8)

'_m(r,8)

(3.12)

We recognizethat in orderto obtainterms of O(I), 60(e) - I.Higher order terms will

have functionalforms for6re(e),m > 0, that are found from the asymptotic expansion

ofthe outer solutionin the matching process.
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r

X

Figure3.2. Cylindricalcoordinatesystem centeredon nozzleexit.
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Before carrying out the expansion represented by (3.12), we write the linearized

equations of continuity, motion, and energy, (3.7), (3.8), and (3.9), respectively, in cylin-

drical coordinates. We include the definition of the mean flow (3.10) and the transforma-

tion to the (r, s) coordinates. Finally, we carry out the differentiations with respect to t

and 0 and divide the equations through by exp[i(nO- wt)]. This results in five equations

relating/_, _, @, _i, and _.

_ 0/_ _0_ 1 0 .

OsJ=0 (3.13)

e 2--_I]_ O_ __0_ ___ 2._._ P 2Vl Or e u Oa J-_+SVx_+e_+e'_ Or +_ u O, +_ -'_+ =----

1

_ o¢ _o,_ = _!i_"_
r rp

Or O,+TL lot +e_ =- pO'--_

la_
"pOt

(3.14)

(3.15)

(3.16)

3

+ ,),i_ [ rl-_.r (re._l) + e.O"u'lOsJ - 0

When we apply the remainder of the expansion (3.12), for example _ is

_(,.,_)= _ 6,_(el_,..(,',_)expi
m'-O

we find terms of the form

ro,:. ,,10 [p, exp(i___)l=L.___.__p,,._ j _'p

Hence, for convenience, let

(3.17)

(3.18)

(3.19)
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Equations (3.13) to (3.17) with the expansion applied, may now be divided through by

exp(idj(s)/E) and partitioned into terms according to _rn(e). In general, the rnth-order

set of equations can be combined in favor of l0m and cast in the form

(3.20)

where _ = o_ - ag. The fight side term G depends on lower order terms only. To
wz

lowest order, m = 0, G O is zero and the equation is homogeneous. The homogeneous

form of (3.20) is commonly called the compressible Rayleigh Equation.

Outside the jet, the mean flow is given by (3.11) and (3.20) reduces, for/30, to

+ Or + 2 PO=°_r 2 oo r
(3.21)

where _ - _ - a_ . Equation (3.21) is Bessel's Equation with solution of the form
oo oo

AoH l)(i r)÷ SoH (3.22)

:H_I) 0 and Hy)0t_ are nth-order Hankel functions of the first and secondThe functions

kind, respectively, and

_ 2-2 (3.23)_(a) - [a2 - pooM_iwoo] 1/2

The choice of branch cuts for (3.23) will be discussed in the matching process.

To generalize, the lowest order solution of (3.20) has two linearly independent

solutions that are functions of r and s. The amplitudes of these functions will vary with

axial location giving a solution of the form

= + (3.24)

As r --* oo, equation (3.24) must tend to (3.22) and as r --* 0,/_0 must be finite.

3.3 Outer Solution

In the region outside the jet, the ambient conditions Poo and uoo are uniform.

Disturbances that travel in this region are independent of the coordinate system. Hence,

distances traveled by the disturbance in any direction will be of the same scale. Using

the cylindrical coordinate system of the inner solution, the axial coordinate was rescaled
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as s - _z. To bring the radial coordinate in the outer region to the same scale, we let

= er be the scaled radial coordinate.

Before transforming the governing equations to the outer coordinates, we want to

reconsider the nondimensionalized momentum equation written as:

0V
-_- + V. VV = -1Vp (3.25)

P

Substituting in (3.6), subtract mean terms, and neglect higher order terms results in a

linea_ed momentum equation of the form

OV t 1V t _.-_---+V-VVt+V_.VV --- p +
P p

(3.26)

This equation more dearly shows the effect of assuming V_ = 0 throughout the medium

outside the the jet (compare (3.26) to (3.8)). Equations (3.7) and (3.9) still apply to the

outer region.

Now, substituting (3.11) into (3.7), (3.9), and (3.26) results in equations from

which v, w, u, and p can be found without refetring to the equation for p, the linearized

form of (3.7). Hence, after transforming from the (r, z) coordinates to the (_, s) coor-

dinates and applying the azimuthal and time dependencies exp(inO - iwt), we get the

outer region linearized momentum and energy disturbance equations.

- t-v +_ =
+ _ v_rr (3.27)

.w _ Ow 2 _oo Ow 2 _
s--w + + E w--_ 1 in

e +%o_-_8 _ _ _ r rPoo
(3.28)

uoog* Pco O, (3.29)

-t-_p+Uooo'ss "t'e _ _r+-_. _r (rv)+-_'w+r -_s =0 (3.30)
3

Since no confusion should arise, primes have been left off the disturbance variables v, w,

u, and p.

The solution to (3.27) through (3.30) begins by taking the Fourier Transform

of the disturbance variables. For instance, the Fourier Transform pair for the pressure

disturbance is:
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FourierTransform:

InverseFourierTransform:

co

1/ •
--oo

(3.31)

oo

p(8) = f _(k)e ilcs dk. (3.32)
--00

After applying the transform, we rearrange the equations and examine them to obtain

the following relations:

-- ik O-f (3.33)

n

Ib = _r_ (3.34)

-i + e2vc¢ _---_ fi = -_----ik_ (3.35)

where _k = w - _k_c_. Equations (3.33) and (3.34) are statements in the transformed

variables that the disturbance velocities outside the jet have zero vorticity. Since the

outer disturbances are acoustic in nature, this result is appropriate, Skudrzyk [1971].

These relations allow the transformed outer equations to be combined into a singIe

equation for _.

(3.36)

This equation almost has a Bessel Equation form. It can be transformed into that form,

Tam and Burton [1984a], where the right hand side is nonzero but very small. We then

get an approximate solution valid to order e2,

_ ,,_ ya/2 Zq (i-kyl/2) (3.37)

where

Y r_2 4_ •.2_2
-" -- 6 pooMj Voo

• 2



_2 = _ 2k2 -- Poo _k

q2 n2 2_2 , 4_..2__2
-- -- e pooMjWkVoo
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and Z 0 represents any Bessel or Hankel function. To satisfy the outgoing wave orq
boundedness condition as F --_ co in (3.36), it will be shown that the proper choice for

,heZ f_n_io__ _H_k__ion of_he_ _ndofo_de_q,R_1)(_/_]. The
q q \ /

general solution for _ is

_ = Cya/2H_l) (ikyl/2) . (3.38)

The factor C may be found from the inner boundary condition on (3.36) as y --. 0,

--, 0. Thus, C is independent of _, but may depend on 8. In essence, the inner

boundary condition is the instability wave suggested by (3.12) which as _ --. 0, has some

amplitude and phase ,4(8, e)exp(i_(s)/e). Now, transform the boundary condition:

oo

1/g(k, 6) = _ A(s, f)ei_(s)/_e -iks ds.
--00

(3.39)

Hence as F -+ 0, _(F, k) = g(k, _). Therefore,

_(_,k) = g(k,e)y(F)a/2H(ql)(i-k(k)y(_)l/2). (3.40)

Finally, using (3.35), (3.32), and absorbing any constants into g(k, e), the outer solution

is

q 3 co/

3.4 Matching to Lowest Order

The inner solution results from asymptotically expanding the equations that apply

to the inner region. As a consequence, it does not satisfy the outer boundary conditions

of the problem that lle in the outer region. Conversely, the outer solution does not

satisfy boundary conditions that are in the inner region. Each part of the problem has

missing conditions that are satisfied by the process of matching the two solutions. As
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statedbyTamandBurton [1984a], the matching procedure to follow is the intermediate

matching principle given by Van Dyke [1975]. The intermediate matching principle

defines an intermediate variable and expands the inner and the outer solutions in terms

of this variable. These two intermediate solutions must overlap in some domain whereby

the difference between the inner and the outer solutions must vanish to the appropriate

order in the intermediate limit. This process will first be followed for the outer solution.

We will then have appropriate information to enable us to find higher order terms of the

inner solution.

The intermediate variable is defined as

= re IlN (3.42)

where N is a large positive number. In terms of the outer variable _, we get

. 1-11N
-" gr -" re (3.43)

Letting r/= Ek, we transform (3.41) from the (_, s) coordinates to the (_, s) coordinates.

'"""']pO(_,8 ) = lg e 1 + i _.-._' _ _ O_

q
(3.44)

where
oo

g
--OO

2 2 2-2 • 4--2-2
q =n --e pc _.w vJ 700

t2 _ , 2_2 1/2_(_)
= - poo_jo.,)

_ = _0 -- 17u--or.

(3.45)

(3.46)

(3.47)

(3.48)

This is theThe goal is to asymptotically evaluate (3.44) as e --, 0 keeping _ fixed.

intermediate limit.

The first step is to evaluate (3.45) by the saddle point method. (See, for exam-

ple, Bender and Orszag [1978] and Dingle [1973].) The saddle point is found by setting
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the derivative of the exponential argument

e(_)= d[4,(8)-_n] (3.49)

equal to zero; that is

or

de(s) [d4(8) n]=i t _ =0

a(8)-_= 0 (3.50)

where use has been made of (3.19). Let _(_) be the root of (3.50). The saddle point is

then at s - _.

Expanding i(s,e) as

l(8,e)= lo(_)+ ei1(_)+...,

the saddle point evaluation of (3.45) is

where

1

a '_ = -i2f_'(_) eit*(_)-'_l/_{io(_)+_B(_)+'"}

da

'_'(_)= _1,=_

(3.51)

(3.52)

and B(_) is defined in Appendix C.

The next step is to substitute (3.52) into _3.44) and evaluate the resulting expres-

sion by the saddle point method, also. Again, the saddle point is found by setting the

derivative of the exponential function

ocT)= _[_(_)-_ + ._]

equal to zero.

d_7 [k d_ _,,i -_+s
_ 0 (3.53)

Noting that d_(3)/d3 = a(3) and that _(_) = _ from (3.50), we get that 807) = 8 at the

saddle point. Hence, the saddle point for (3.44) is _ = e(8).

After the saddle point is defined, there is a lot of algebra involved in obtaining

the evaluation of (3.44). An outline of the steps involved is given in Appendix C. The



final result for the outersolutionin the intermediate limit is

2

where

= ¢_ M._ _ h e-x/N_ A0oo 3 c_ oo

- i --0 a +'fiooM2._ _oo n2 ÷ A(a)e-1/Nr
2 A(a)4 g co
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(3.54)

oo

+
_ 2._.2 ,

1, n;OSnO = O, n 0

l da(s) -,
a = d"--_" and AO = ds "

Equation (3.54) has terms of O(1), O(eln_), and O(e). This suggests that the

expansion given by (3.12) should have

_1(_) = e h _ (3.55)
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We now want to match the outer solution expansion (3.54) to the inner solution ex-

pansion in the intermediate coordinates. From (3.18) and (3.24) and using r = _E -1/N,

the inner expansion to 0(1) is

As _ -* 0 with _ fixed, then

_ (e-1/N''s)-* H(1) ( '_(a)e-1/N_)n

_ -I/N. ( )¢_(e _,_)--, H(2) i_(_) -1/_r_ .

Hence, in the intermediate limit

Comparing (3.56) to (3.54), we see that

Ao(s ) = 240(s ) (3.57)

Bo(,)= o. (3.58)

This result and the condition of finite value at r = 0 placed on (3.24) turns the m = 0

solution of (3.20) into an eigenvalue problem with solutions only for certain values of the

eigenvalue a.

The matching of the inner and outer solutions at the intermediate limit and at

the saddle point _ = a(s) has also matched the arguments of the Hankel functions H (1).
n

We can now show that this is the proper choice to meet the bonndedness condition as

r --+ oo and what the conditions must be on the argument of the function. When the

asymptotic expansion for large arguments is made, the Hankel function of the first kind

takes the form (Abramowitz and Stegun [196511,

H(1)(z) ,,_ z-:L/2e iz. (3.59)

Writing the Hankel function argument in (3.541 and (3.56) as

= _(Re(,X(-)}+ i_t',,-,(,X(,_)}),-



59

and substituting into (3.59), the exponential function becomes

e- _{_(o,)},'e-am{ _(o_)},""

To insure that the function decays for large r, we must have that Re{_(_)} > O. In

general, then, for the complex value _(a),

- _ _< arg _(a) _ 2" (3.60)

This represents the choice of branch cuts for (3.23). Furthermore, since in the matching

process rI - a(s), (3.60) must also apply to ;_(r/) in (3.44), which basically has the

same Hankel function argument as (3.38). Thus, we are justified in choosing the Hankel

function of the first kind as the functional form for the solution in (3.37).

3.5 Matching to Higher Order

To match terms to higher order, we substitute (3.55) into the expansion for the

inner region equations (3.13) through (3.17). The equations can then be clearly parti-

tioned into O(elne) and O(_) terms. These equations can be combined into the form of

(3.20) where Gl(r , 8) - 0 and G2(r , 8) is a function of ra - 0 terms.

With Gl(r,s ) = 0, the O(_lne) expansion term has a solution identical to the

O(1) term. Hence,

/_l(r, s) -- Al(S)¢_(r, s ) -I- Bl(S)¢_(r,s ). (3.61)

The same boundedness conditions apply here as in the O(1) solution in the previous

section. Following the same procedure in the intermediate limit, we find after matching

to (3.54) that

A1(_)= -,p_M_A 0(_) (3.62)

Bl(S)--'O (3.63)

Equation (3.20) for m = 2 is inhomogeneous. When the O(E) inner equations are

manipulated to obtain the form of (3.20), the right side becomes

where

°" }a2(,.,_)=_ + _ O,.jR +--_ +,_+i"R, _ +i_,R

_% _% .
Rv=-Vl Or -U Os -Vo Or

(3.64)

(3.65)
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R =--_10_0 0t_ .

u Or - u Os - aoOs -_Os - -_ [ 1 Or + _ (3.67)

" lO _Rp -M_t Or % _ 08 08

In this ease, the solution of (3.20) is the sum of the homogeneous and particular solutions

as found using the method of variation of parameters, Bender and Orszag [1978]. It takes

the general form

P2(r,s) = a2(s)¢P(r,s)+ B2(s)¢_(r, s)

"%(y,.)¢_(y,.)

0

"%(y,.lCfCy,.).

0

(3.69)

where _ and _ are the eigenfunctions of the homogeneous form of (3.20) and W(r, 8)

is the Wronskian of ¢_ and ¢_ given by

W(r, 8) = -i4p_-'2 (3.70)
D --.2 "

lr rPooWoo

Again, in the intermediate region, we transform from r to _ in (3.69). When

this is done, we note that the intermediate limit lles outside the jet boundary defined

at r = r . Beyond this point, the mean flow conditions are uniform and the inner
m

solution eigenfunctions take on the Hankel function form as shown in (3.22). Thus, in

the intermediate limit, the integrals in (3.69) ca_ be split between the regions 0 _< y _< r
t71

and r < y <: e-1/N_.
m _ m

_(_,8) : A2(8)H(1)(i_(ot)e-1/N_) -I- B2(8)Hn (2) (i_(ot)_-l/N_)

7-

- H'(1)n (i_(,)_.-I/N,) J¢'_(Z/"s)_'P(Y'W(y..s).9)dy
0
f.

+ H:2)(iA(")'-I/NF) J W(,,,)
0
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-1/_v_

/ "%(y,_)_.(%_(.)y).
r W(y, s) ay

tr$

J wcy, s) v.
fn

(3.n)

The integrals for r < y < _-I/N6, as outlined in Appendix C, contain products of

Hankel functions and powers of y. They are solwbh in dosed form using formulas

from Luke [1962] and Watson [1966]. The results for _fi2in the intermediate limit is

[_G2(Y,")_P(Y,8) _r J H(2 ) (iA(ve)e_l/N_+ [Jo w(_,.) ey+711 (3.r2)

where

_ ( )=-tp M.'_ _ In e-1/N_ AO0030000

_ _ 2_ _ 2 2

A(a) 4

D 0 is given in (3.54), and I 1 and 12 are defined in Appendix C. Again, taking into

account the boundedness condition on the inner solution, matching (3.72) to the 0(6)
terms of (3.54) results in

A2(s ) + F I_ -1/Nrl _ G2(', a)¢_(Y, a) _r- ] w(v,.) ev- _z2
0

- 2_ _ _r- /-1/N_'
= SnOPvvM;wooroo'2Ao + A1 + E (e ) (3.73)
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0

=0, (3.74)

B2(s)=0. (3.75)

Equation (3.73) relates A 2 to A0 and A1 wh_le (3.74), when written out, provides a

differential equation for A 0.

_I 3 + AOI 4 = 0 (3.76)

where I 3 and I 4 are given in Appendix C. The solution to (3.76) is

Ao(s)=Aoexp[-fO I4d8]'I3
(3.77)

This completes the solution of the problem to 0(1). Equation (3.77) shows the change

in AO(S ) due to a slowly diverging flow. For a single supersonic jet, this effect has been

shown to be small, Morris and Tam [1977].

3.6 Near Field Pressure

The near field pressure disturbances to 0(1) outside the jet are found from (3.44).

Using the following results from Appendix C:

and

(r__2 4_ ,.2-2 '_-i½_ooM_oo-e poo._j,oo) := 1-i@co M'2_.7rl_ lnF+ -..

( (r-.2 2_2 )__H(1)(i.X(rl)l,)..l_O(e),
H (1) ilA07) -,4-_e M.v _

q 3 e_} n

=  o(8) + o(e),

with s = ez and _ = er, the pressure disturbances outside the jet, (3.44), induding the

azimuthal and time dependencies, to O(1) is

oo

p(r,O,z,t) = / gCQ)H(1)CiAO7)r)ei_ZeinOe-i_t d_7
--00

(3.78)



63

where
oo

1
g(n) = _ / Ao(eZ) eif(ez)/_e-inx dz (3.79)

--00

and _(_) is given by (3.47). Equations (3.78) and (3.79) take the axial evolution of

the n-th mode spatial instability wave described by A0 exp(i_/z), Fourier transform it

into wavenumber space, multiply it by a "propagator" function H (1), and then inverse
n

Fourier transform the result back to physical space. In essence, the instability wave

is considered the source in a radiation problem where in the near field there are both

propagating and nonpropagating waves. It is the propagating waves that get to the far

field as sound.

3.7 Far Field Pressure

To get an estimate of the sound radiated to the far field, it is first convenient to

transform from cylindrical to spherical coordinates. Letting

z = R cos_, and r = R sin _ (3.80)

equation (3.78) becomes

oo

p(R, O, _,t)= / gOT)H(1)(i_(_)Rsin _)e i'Rc°s¢ einOe -i_t d_7.
--CO

(3.81)

In the far field where R is large, we can replace the Hankel function by its asymptotic

form, Abramowitz and Stegun [1965].

1

J_r(1)(i_(r/)R sin _)_ [Iri)_(rl_RSinlb]]e-)_(r/)Rsin_e-i_ne -i_ (3.82)

Substituting (3.82) into (3.81) results in an integral that can be evaluated by the method

of stationary phase, Junger and Feit [1986]. The final solution is

2 g(_) " - - -"

p(R,O,_,t)N R [1-- M 2COsin2 _] 1/2e'[_(_)+nO ¢°t]e ,_(n+l)
(3.83)

where

_(_) -- 1- M 2 CO 3 CO - M costb , (3.84)
CO
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and the stationary phase point _ is given by
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Equation (3.83) can be used to get the far field pressure directivity pattern. Prom Pierce

[1989], the normalized differential sound power passing through a differential spherical

area is given as

= 2[p[2R 2 sin ¢ dlb dO. (3.86)

I

dP

Noting that the differential solid aagie is defined as

df_ = sin _ d_ d0, (3.87)

we get the sound power radiatedper unit solidangle afterdividing(3.86)by (3.87),

Ig( )l2dP
 Ipl2R2 = 2

D(xb)- _'_ - - [1 - M2w sin2 _]" (3.88)

To find the angular dependence of g(_), (3.85) must be solved for _ in terms of

7- When this is done, we find that solutions only exist for _ < _c where

Pl/2MJw (3.89)
_c- I+M

limiting_bsuch that 0 _<_b< _r/2.

3.8 Numerical Formulation

The problem we set out to solve has been completed to within a constant, basically,

the initial amplitude of the instability wave. To obtain results for various flow conditions

in a supersonic coaxial jet, the pertinent equations of this chapter, (3.20), (3.78), and

(3.88), must be solved numerically.

As was mentioned with regard to (3.77)_ the effect of flow divergence on stability

resultsfrom supersonicjetsissmall.Tam et aL [1992]neglectthiseffectin calculating

the instabilitywaves in a Mach 2,hot jet. In an extensionof the model to include a

wide spectrum of frequencies,Tam and Chen [1993]assumed that the validityof the
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model would not be affected by neglecting the flow divergence. Morris and Bhat [1992]

make the same as§umption for instability wave calculations in supersonic elliptic jets.

The instability wave characteristics are then governed by the local eigenvalues at each

axial location, known as the locally parallel flow approximation. The growth and decay

of the instability wave is then governed solely by the spreading of the mean flow and

the effect of the change in the eigenftmction shape with axial distance is neglected. We

will follow this assumption in our estimates of the instability wave characteristics in

supersonic coaxial jets. Thus, equation (3.77) reduces to

A0(a)--- "40 (3.90)

and the phase term from (3.19) is found from

z

 (ex)/e = / a(z)
0

(3.91)

3.8.1 Eigenvalue Problem

Finite differencing (3.20) for m - 0 is one of the alternatives for obtaining a

numerical solution to the eigenvalue problem (See Mack [1984] and Drazin and Reid

[1981]). It is easily applied using the same evenly spaced r-grid on which the mean

flow was calculated and it provides a simple means to determine an initial guess for the

eigenvalue. We rewrite (3.20) as

_2pO+ +2_-@ l_r_ _PO+ _c) c r-2 _0___0 (3.92)

where c -- w/a and _ = c - _. For the spatial stability problem, w is real and c is

complex, c : cr + ic i (as is a - ¢_r ÷ i¢_i)" Changing the eigenvalue from ¢_ to c confines

the range in which the eigenvalue lies in the complex c-plane. Given any real w, the

eigenvalue c will have a real part, cr, that is within or near the bounds set by the real

mean velocity _. Thus, c is easily found compared to a and the numerical technique

is more easily controlled since c lies within a limited range. Furthermore, in the initial

region of a coaxial jet with two thin shear layers and two eigenvalues, using c as the

eigenvalue allows easy identification of which c belongs to which shear layer.

For eigenvalues representing growing waves, we apply central differencing to the

derivatives in (3.92) and rearrange into tridiagonal form to get the following difference



equation

where

and

2

are known at each interior grid point.
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(3.93)

3.8.2 Boundary Conditions

The inner boundary condition on (3.92) depends on whether the eigenfunction is

either axisymmetric, n = 0, or non-axisymmetric, n _ 0. Axisymmetry requires that

the eigenfunction have a zero first derivative on the axis. For non-axisymmetry, the

eigenfunction has opposite signs either side of the axis; hence, the eigenfunction must be

zero on the axis. In equation form, the inner boundary condition is written as

_r = 0,z', = 0 (3.94)

Pl = 0,z # 0.

The outer boundary condition was defined by (3.21), (3.22), and from matching

B 0 = 0. Taking the ratio of the two outermost grid points eliminates A 0 and rearranging

the results to get

H(1)n(i_rN-F1)

\)(i_rN_ _]¢ + 16N+ I = 0 (3.95)H (1)
n

defines the outer boundary condition.

3.8.3 Methodology of Numerical Solution

Equations (3.93), (3.94), and (3.95) whet put together create a tridiagonal system

of equations that can be written as

A(c)p = 0. (3.96)
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This equation forms a generalized eigenvalue problem, Stewart [1973], which has a non-

trivial solution only when

det [ACe)] = O. (3.97)

The determinant of A is easily calculated as the product of the diagonal terms in an

LU-decomposition of A.

The solution of (3.97) requires an initial guess for the eigenvalue c. The form of

(3.97) provides an easy means of finding an initial guess. For a complex c, the deter-

minant of A is, in general, complex, also. Setting up a grid over the region in which

the eigenvalue is suspected to lie, the determinant of A is calculated at each point.

Contours are then drawn through the region that define the zeroes of the real part and

the imaginary part of det[A(c)]. These contours only cross at the eigenvalue. Once

the initial guess for the eigenvalue is made, refinement of its value is achieved using the

Newton-Raphson iteration method.

For a typical instability wave calculation, the eigenvalue must be found at every

axial location for a given frequency w. The contour grid method is performed at the first

upstream profile. Thereafter, the eigenvalue solution at the previous axial location can

be used as the initial guess for the eigenvalue at the next axial location. Extrapolating

the first guessed eigenvalue at the next axial location from previous values often speeds

up the convergence as long as the mean flow profiles are slowly changing.

3.8.4 Contour Solution

The numerical solution above has been discussed in terms of growing eigenvalues

where c. > 0. Implicit in the discussion was that the solution can then be calculated

along the real r-axis. However, in order to continue the inviscid stability calculations

into the damped region, c i < 0, it is well known that a contour deformation must be

made into the complex r-plane to avoid the critical point r where c - _(rc) -- 0. (See,c

for example, Tam [1975], Morris and Tam [1977], Tam and Morris [1980], and Tam and

Burton [1984a].) If all the variables in (3.92) are assumed to be analytic, then any

contour can be chosen that avoids the critical point. Boyd [1985] discusses a number of

complex mapping techniques to do the contour calculations. In our case, however, _ and

in (3.92) are only known on the real axis. It was found to be simpler to calculate their

analytic continuation into the complex plane along a simple box path around r ratherc
than using complex mapping.

The direction of the contour into the complex r-plane is determined from the

derivative of the mean velocity profile. For normal profile jets, S/Or < O. The critical

point for a growing mode lies in the lower half plane and passes into the upper half plane

when damped. The contour for damped waves must then go into the upper half plane

to go around the critical point since the branch cut associated with the critical point
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goesto -co in the direction of the negative imaginary axis. The reverse is true for the

inverted profile jet where in the inner shear layer, _-_/0r > 0. The contour must go

below the damped critical point in the lower half plane as the branch cut goes to +oo.

In order to perform the calculations on the contour, the mean _low values must be

determined on the contour from analytic continuation of the values on the real axis. A

Taylor series expansion about the real axis for both the mean value and its first derivative

are generally written as

102f(r)_2 10f(r)r 103f(r)r3]
(3.98)

0f(r) 0f(r)103f(,)_2 I_2f(r)104f(r) 31

Or - Or 2 or=r-T'+'[0r" g °" r,j (3.99)

where r = r + it. and r. is the distance that a grid point on the contour is from the real
! $

axis. As appropriate, f represents either _ or _. Equations (3.98) and (3.99) become

increasingly inaccurate representations of f(r) as r. increases or as the curvature of the
s

profile gets larger. The latter is especially true near the edges of the mean shear layer. To

minimize inaccuracies, the magnitude of the second term in either the real or imaginary

parts of the expansions was limited to ten percent of the first term. Calculations of the

damped instability eigenvalues were stopped if this criterion was exceeded.

Once the numerical differencing along the contour was completed, as described

in Appendix D, the system of equations leading to (3.96) was found to be augmented

by the number of grid points that were added along the vertical parts of one or two box

contours. The formalism of the solution as previously described did not change as the

calculations proceeded from the growing to the damped eigenvalue solutions.

3.8.5 Near and Far Field Pressure

Both the near field pressure solution, (3.78), and the far field pressure directivity,

(3.88), depend upon the Fourier Transform of the instability wave, (3.79). We can use

the Fast Fourier Transform (FFT) to perform _he calculations (Brigham [1974]). Using

the trapezoidal rule, (3.91) is written as

m

_j-'_j-lq'2(ajq'aj-1) (xj Zj_l) (3.1oo)

where

@0=0 and j=I,2,...,K.
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Setting A0 - 1, the FFT of the instability wave becomes

M-1

j-0

(3.101)

where by definition for j > K, exp(i_) - 0. With M > K, we have zero padded the

FFT of the instability wave and increased the resolution in the wavenumber spectrum

since
2_

AT- MAx" (3.102)

Finally, the wavenumber spectrum of the instability wave is given by

(3.103)

where

maT, 0 m 1 (3.104)
_m = (m--M)A_7, __<m<M-1

The first half of the FFT contains the spectrum for positive wavenumbers and the second

half contains the spectrum for the negative wavenumbers.

To solve for the near field pressure, we recognize that (3.78) has the form of a

convolution integral that is being solved in the transform domain. Williams and Maynard

[1982] and Veronesi and Maynard [1987] have devised a formulation for correctly solving

a two-dimensional form of this equation where the propagator function, in our case H (1),
n

is known analytically. The formulation is easily written for our one-dimensional problem

and (3.78) is written as (ignoring 0 and t dependence)

p (r, zj)= IFFT {FFT (exp (iCj)}m H(1)(i_(_m)r)} (3.105)

where the inverse FFT is defined by

1 M-1

IFFT(fm}j=- _ _ /re
rn---O

(3.106)

and _/m is defined in (3.104). The zero padding in (3.101) must have M _> 2K. Veronesi

and Maynard [1987] discuss errors that may arise in performing (3.105) such as the

presence of fictitious sources generated by the discretization of the continuous Hankel

function and the presence of singularities of the Hankel function. Replacing H (1) in
n

(3.105) by an integrated average over the wavenumber resolution A_7 at each _m would
minimize these possible sources of error.
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The far field directivity is determined directly by substitution of (3.103) into

(3.88) slid using only positive wavenumbers. For each r/m, the angular dependence _p is

determined from the inverse of (3.85) up to the limit set by (3.89).

3.9 Single Jet Examples

The calculated results consisting of mean flow, instability wave characteristics,

sad radiated noise are compared to measurements from Msch 2, perfectly expanded

jets. Mean flow and acoustic calculation results are compared to measurements taken

by Selner et al. [1982] and Seiner and Ponton [1985] on a cold jet. For a hot jet, the

calculated results are compared to measurements from Seiner et al. [1992]. In addition,

our calculated stability characteristics are compared to those calculations by Seiner et al.

[1993] for the same hot jet using analytic functions and Crocco's Relation to represent

the mean flow. These studies have been specifically designed to study the importance of

instability waves as noise generators in high Re}axolds number, supersonic, axisymmetric,

single jets. As such, they provide data with which to qualitatively and quantitatively

assess our numerical calculations of mean flow, instability waves, and external pressure

disturbances.

The mean flow comparison for a cold, Ma_h 2 jet is shown in Figure 3.3(a) for

centerline velocity and in Figure 3.3(b) for haJf velocity point and jet half-width. The

data are from Seiner and Ponton [1985]. The ;aumerical calculations are not spreading

the jet fast enough compared to data, a functior_ of the turbulence model discussed in the

previous chapter, but the qualitative comparison of slow initial growth followed by more

rapid jet spreading after the end of the potential core is represented in the calculations.

The near field sound pressures for this jet were mapped by Seiner et al. [1982]. The

1/3 octave filtered measurements are shown m Figure 3.4(a) for a Strouhal number

(St = fD/U.) of 0.2 and in Figure 3.5(a) for St = 0.4. The single frequency near field

pressure contours from our numerical calcnlstions are shown in part (b) of each figure.

These contours are based on the n = 1 azimuthal mode which was shown in Seiner et al.

[1982] to be more dominant than the n = 0 mode. The levels shown in the numerical

calculations are arbitrary and are provided a_ a means of relative comparisons. The

measured data shows an estimation of the ori_,,in and direction of the sound emission.

The same results are seen in the calculations. Furthermore, as Strouhal number increased

from 0.2 to 0.4, the peak of the field narrowed and the origin moved towards the nozzle

in both measured and calculated results. The n_rrowing peak is confirmed in the far field

directivity measurements from Seiner and Pont, on [1985] and in our calculations shown

in Figure 3.6. For both sets of measured and calculated data, the peak at St = 0.25 is

broader compared to the peak at St = 0.39.
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Figure 3.3. Comparison of cold Mach 2 jet calculations to measured data, mean flow.
Data from Seiner and Ponton [1985]. (a) centerline velocity; (b) jet half velocity point

and half-width b. Operating conditions: U. - 510 m/s, Tj - 162 K, Rj - 2.49 cm.
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pressure contours. Data from Seiner et al. [1982]. (a) 1/3 octave band filtered measure-
ments at St = .40; (b) calculated contours at St = .40
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The hot, Mach 2 jet data were taken by Seiner et al. [1992] to study the rela-

tive importance of supersonic instability waves compared to Kelvin-Helmholtz instability

waves in the noise generation process. The latter were dominant; hence, our calculations

for Kelvin-Helmholtz waves are compared to their measurements. This type of compar-

ison was also done by Seiner et al. [1993] where mean flow measurements were used to

determine parameters to define the mean flow analytically. Using the analytic mean flow

profiles, stability calculations were done leading eventually to far field directivity pat-

terns. These results are used as a basis of comparison for our stability calculations using

numerically generated mean flow profiles. The mean flow centerline velocity calculations

are compared to data in Figure 3.7. Both results have shorter potential core lengths

than the cold jet results shown in Figure 3.3. The instability wave calculations are com-

pared in Figure 3.8 for both n = 0 and n = 1 azimuthal modes at a Strouhal number

of 0.4. Both sets compare growth rates and phase velocities. For the analytical calcu-

lations in Seiner et al. [1993], the contour integration in the damped region is avoided

by including damping in the stability calculations. Our calculations fonow the inviscid

contour integration described above. For the n = 1 mode shown in Figure 3.8(b), both

calculations give similarly shaped growth rate _d phase velocity curves. They are less

similar for the n = 0 curves in Figure 3.8(a). The inviscid contour solution for the n -- 0

mode fails to converge as the phase velocity approaches the maximum mean velocity. To

extend the instability wave solution downstream, the assumption is made that the phase

velocity is proportional to the centerline velocity and the rate of decay is a constant.

Even though the initial growth rates and phase velocities for both modes are very simi-

lar for the two calculations, they begin to differ as the mean flows differ in their spreading

rate. As shown in Michalke [1984], the instability wave growth rates and phase velocities

depend on the shape of the mean flow profiles and even though Figure 2.3 showed that

analytic functions can compare well with numerical results, the difference in spreading

rates between the two mean flows gives different stability characteristics at the same

axial location. In this case, the stability characteristics may show better comparison if

they were scaled by a local length scale such at the local momentum thickness.

The comparisons of far field directivity patterns for the hot, Mach 2 jet are shown

in Figure 3.9(a) for St = 0.1 and in Figure 3.0(b) for St = 0.4. Both our calculations

(based on numerically generated mean flow) and the calculations from Seiner et al. [1993]

(based on analytically generated mean flow) are compared to measured far field results

from Selner et al. [1992]. In Figure 3.9(a), both sets of far field calculated results peak at

about the same relative level and at the same directivity angle. The same is basically true

for the higher 0.4 Strouhal number calculations shown in Figure 3.9(b). The oscillations

in the n = 0 results are due to the assumptioxt that the decay rate is constant further

downstream. As clearly shown in Figure 3.8(a), this assumption underestimates the

damping and the decay rate is not enough to damp out the instability wave for n - 0.
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The wave lingers on as the wavelength gets shorter with axial distance. The Fourier

Transform of such a wave results in the oscillatory pattern seen in the wavenumber

spectrum. Nonetheless, the peak level and directivity are well predicted.

3.10 Coaxial Jet Examples

Much of the coaxial jet data discussed in the introduction lacks the detailed mea-

surements needed to make good comparisons to the single frequency, instability wave

noise generation model used in our calculations. Furthermore, most of the supersonic

coaxial jets, especially those with inverted velocity profiles, contained shocks that impact

the mean flow and the noise generation processes. However, at the minimum noise con-

dition, shock associated noise was reduced and the mean flow downstream of a composite

shock structure had the characteristics of a fully expanded flow. The shock associated

noise was dominant in the upstream directions and when it was minimized, the mixing

noise, predicted by the instability wave noise generation model, was more dominant. It

peaks in the downstream direction. Thus, we can compare our calculated results to mea-

surements of shock containing, supersonic coaxial jets operated at the minimum noise

condition.

Tanna et al. [1981] conducted a systematic experimental study of supersonic,

coaxial jets. For a nozzle with area ratio A2/A 1 = 0.747, they found that a minimum
condition for shock associated noise existed when the inner stream was operated at

slightly supersonic conditions. Directivity patterns were measured for overall sound

pressure level (OASPL) and for 1/3 octave-band frequency spectra at 30, 60, and 90

degrees to the jet axis. The spectra at 30 degrees showed a dominant peak due to

mixing noise. About this peak, frequencies were chosen to compare measured data to

calculated single frequency results. Calculated far field directivity patterns are compared

to measured far field directivities for both an inverted velocity profile jet and a normal

velocity profile jet operated at minimum noise conditions.

The inverted velocity profile operating conditions are taken from Test Point 35

in Tanna et al. [1981]. The nozzle exit velocities are U 1 = 466.6 m/s and U2 = 662.3

m/s. Using the given mass flow rates, we calculate the exit static temperatures as

T 1 -- 512 K and T 2 - 562 K. These give the exit Mach numbers as M 1 -- 1.03 and

_/2 = 1.39 showing that the inner stream is slightly supersonic. With these operating
conditions, we calculate the mean flow, the instability wave characteristics, and the far

field directivity pattern. Using the 1/3 octave center frequencies of 500, 1000, 1600,

and 3150 Hz, we calculated the stability characteristics at Strouhal numbers fDe/U of

and U are the equivalent single jet diameter and exit.05, .11, .18, and .36 where D e e
velocity, respectively. Unlike the Mach 2 single jet results where the n = 1 mode was

more dominant than the n = 0 mode, the n = 0 mode was found to be more dominant
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than the n = 1 mode offthe jet axis. An example of this is shown in Figure 3.10(a) for the

wavenumber spectrum at St = .18. These spectra were calculated from the outer shear

layer instability wave characteristics. The critical wavenumber _c' defined in (3.89), is

shown in the figure. Everything at smaller wavenumbers propagates with supersonic

phase velocity and everything at larger wavenumbers propagates with subsonic phase

velocity. Hence, even though the n = 1 mode has a higher spectrum amplitude, these

higher amplitude wavenumbers have subsonic phase velocities and do not radiate noise

to the far field. Therefore, the n = 0 mode dominates at angles away from the jet

axis and these modes are used to determine the far field directivity patterns shown in

Figure 3.10(b). The calculated directivities are scaled to agree with the measured 1/3

octave amplitudes at 30 degrees. The peak direction in the far field is well predicted by

the calculated results.

The normal velocity profile operating conditions are taken from Test Point 21.

The nozzle exit velocities are U 1 = 539.6 m/s and U2 = 403.2 m/s. Again from using the

given mass flow rates, the exit static temperatures are T 1 = 687 K and T 2 = 207 K, and

we get similar Mach numbers, M 1 = 1.03 and M 2 = 1.40. For this case, the 1/3 octave

center frequencies were at 500, 1000, 2500, and 4000 Hz corresponding to single frequency

Strouhal numbers fDe/U e = .07, .14, .36, and .58, respectively. Since the outer shear

layer has a larger _U than the inner shear layer, the outer instability waves grow larger

and dominate the inner instability waves as shown in Figure 3.11(a) for St - .58. In

addition, at all four Strouhal numbers, the n = 1 mode has a larger spectrum amplitude

than the n = 0 mode. In contrast to the results shown in Figure 3.10(a), the critical

wavenumber does not cutoff the peak as much and leaves the n = 1 mode as the mode

with the larger noise radiation. Using the same type of normalization as the previous

case, the n - 1 far field directivities are shown in Figure 3.11(b). Since the peak of the

wavenumber spectrum is cutoff by _7c, the calculated directivities are maximum on the

jet axis. This tends to agree with the trend in the 1/3 octave band data, but the data

are limited.

3.11 Summary

The analysis to predict the noise generation from a single frequency instability

wave propagating in the shear layer of a supersonic, perfectly expanded, axisymmetric

jet was completed. Equations were developed to calculate the local instability wave

characteristics at each axial location of a growing shear layer given the mean flow velocity

and density profiles. These characteristics were used to calculate the evolving growth

and decay of the instability wave. The Fourier Transform of the instability wave gave the

wavenumber spectrum that showed those components of the instability wave that had

supersonic phase velocities relative to ambient and those that did not. The supersonic
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(a) outer and inner shear layer wavenumber spectra; (b) far field directivJty at various

St, n = 1, data from Tanna et al. [1981] in 1/3 octave bands and overall sound pressurelevels.



83

phase components were the ones that radiated to the far field as sound. Equations

were also developed to use the wavenumber spectrum to calculate the near field pressure

disturbances and the far field sound directivity. This approach was directly applied to

the supersonic coaxial jet once the mean flow properties were calculated numerically

using the scheme described in the previous chapter.

The numerical formulation for the instability wave and the sound field solution

was checked by comparing our calculated results to measured data and other calculated

results for a cold and a hot Mach 2 jet. We used the operating conditions given in the

references to numerically calculate the mean flow. Given the differences in mean flow

spreading between our calculated mean flow and the measured mean flow, the results we

calculated for instability wave characteristics, near field pressures, and far field directivity

agreed with previous measured and calculated results for relative amplitudes and peak

directivity. Example cases were then shown for an inverted velocity profile and a normal

velocity profile coaxial jet. With a limited amount of measured far field directivity data

from coaxial jets, our calculated single frequency far field directivities agreed with the

basic trends shown in the data. In the next chapter, we discuss the results from a small

parametric study of supersonic coaxial jet instability wave noise generation.
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RESULTS FROM

SUPERSONIC COAXIAL JET STUDY

The mean flow formulation from Chapter 2 and the instability wave noise gen-

eration model from Chapter 3 are used to conduct a study to gauge the effectiveness

of changing various operating parameters on the instability wave noise generation from

perfectly expanded, supersonic coaxial jets. To fully cover the possible ranges for ve-

locity ratio, temperature ratio, exit area ratio, and external flow conditions would be

an enormous task to cover; hence, by necessity, choices are made to limit the scope of

the study. A single jet with exit velocity of 1330 m/s and exit static temperature of

1100 K is chosen as the reference jet with Mach number 2. When scaled up, this jet

would produce thrusts and mass flows comparv.ble to those projected for supersonic jet

transport aircraft engines. Following the choice of operating conditions for the reference

jet, operating conditions are calculated for normal velocity profile and inverted velocity

profile jets at the same total thrust, total mass flow, and total exit area as the reference

jet. With the exit area ratio fixed, the normal velocity profile calculations are conducted

for a small set of velocity and temperature ratios and the inverted velocity profile cal-

culations are conducted for a small set of conditions for jets operating at the minimum

noise condition given by Tanna et al. [1985]. The area ratio for these coaxial jets is

chosen to be 1.25 and the external velocity is negligible.

In the following discussion, the normal velocity profile results and the inverted ve-

locity profile results are considered separately. In general, we first discuss the mean flow

calculations and compare the results for different operating conditions. This is followed

by an example of the growth rate and phase w:locity results from the stability calcula-

tions. These results are then considered in terms of the wavenumber spectrum of the

instability wave calculated from the local growl h rates and phase velocities. It is in the

wavenumber domain that we compare how the _zowth and decay of the instability waves

are affected by the different mean flow profiles based on different operating conditions.

Since the calculations for near field pressure disturbances and far field sound directivity

outside the jet are based on instability waves, changes in those results are also examined.

The amplitude of the near field pressure distuJ-bances are plotted in contours to show

how the sound emanates from the jet. Some example contour plots are given. Compar-

isons of far field directivity patterns are easier to make, however, so they are examined
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in more detail for the various operating conditions. The normal velocity profile results

will be discussed first; fonowed by the discussion on the inverted velocity profile results.

4.1 Normal Velocity Profile

The study of supersonic coaxial jets with initial normal velocity profiles is con-

ducted with these jets having the same total thrust, total mass flow, and total exit area

as the reference jet. This means that velocities, temperatures, and areas are chosen to

meet these constraints. It is assumed that the llp of the nozzle exit between the two

streams is very thin with negligible area. Thus, the total exit area of the two streams

equals the exit area of the single stream reference jet. After equating the total mass

flow of the coaxial jet to the mass flow of the reference jet and the total thrust of the

coaxial jet to the thrust of the reference jet, we solve for the coaxial jet inner stream exit

velocity U1 and exit static temperature T 1.

and

(4.1)

where U is the reference jet exit velocity, T is the reference jet exit static temperature,
e e

A 1 is the coaxial jet inner stream exit area, A 2 is the outer stream exit area, r is the

velocity ratio U2/UI, and s is the density ratio p2/p 1. These definitions for r and 8 are

consistent with their usage in Appendix A. Since r and 8 are used elsewhere to define

coordinate scales, it should be dear from the context when r and 8 refer to a velocity

ratio and to a density ratio, respectively. The density ratio may also be converted to,

and referred to as, a temperature ratio by using the perfect gas law and constant static

pressure. Hence, s = p2/p 1 = T1/T 2. From the definitions of r and s, it immediately
follows that the outer stream velocity and static temperature are given by

U2 -- rU 1 (4.3)

and

T2 -T1 (4.4)
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For fixedarea ratio,equations(4.1)and (4.2)have r and 8 as two independent param-

eters.The parameters chosen forstudy are shown in Table 4.1.Noticethat in order to

maintain constantthrustand mass flowat a constantexitarea,the innerstream velocity

isalwayshigherthan the referencejetvelocityand the temperatures change accordingly.

The parameter space forthe normal profilecases(as wellas the invertedprofilecases)

containoperatingconditionsthat areof more academic interestthan practical.For in-

stance,itwould be difficultinpropulsionsystems to achievethe conditionsofa relatively

low speed,hot jetstream with a high speed,cooljetstream.

4.1.1 Mean Flow Results

A typical result for a normal velocity profile mean flow calculation is shown in

Figure 4.1(a). The plot shows the edges of the large inner potential core, the edges of the

smaller outer potential core, and the outer edge of the jet. These results are basically

identical in fore to those measured by Ko and Kwan [1976] for subsonic coaxial jets.

Also shown in the plot are curves representing the half velocity point of the total jet and

the region over which the two shear layers merge. The half velocity point is defined as

the radial point at any axial location where the velocity is halfway between the maximum

velocity (for a normal velocity profile jet it is _he centerline velocity) and the ambient

axial velocity. For the r = 0.6 case shown (Case #3 in Table 4.1), the half velocity

point begins outside the outer potential core. This is typical for all cases where r _ 0.5.

For r _ 0.5, the half velocity point begins in the region between the inner potential

core and the outer potential core. The region of shear layer merging is indicated by the

line labeled U extending from the tip of the outer potential core. It is the point
merge

described in Figure 2.10 that is identified as the edge between the merging shear layers

in the mixing length model. This merging region is also indicated by the change in slope

in the outer edge line. Similar slope changes were noted by Ko and Kwan [1976]. The

slope changes are abrupt due to the change in the turbulence model at those locations.

The basic mean flow properties for all the calculated normal velocity profile cases

are shown in Figure 4.1(b) in terms of the loc_tions of the outer core tip, the inner

core tip, and the end of the merge region. Con.,idering the inner core tip locations first,

we have noted earlier that the effect of an external flow is to lengthen a jet potential

core and the effect of increased temperature on a jet is to decrease the length of the

potential core. Given the different velocities and temperatures for the two streams, the

calculated results for the inner core tip locations follow in line with the temperature

of the inner stream. The hottest inner stream had the shortest potential core and the

fastest spreading for the inner shear layer. The coolest inner stream had the longest

potential core and the slowest spreading for the inner shear layer. The results for the

outer potential core length show that in general for a given velocity ratio, the outer core

length is shorter for lower outer velocities and a higher temperature and longer for a
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1" S

Reference - -

Normal

Case #

2

3
4

5

6

7

8

UICm/s) U2Cm/s) T1CK) T2CK) M1 M2

1330.() - 1100.0 - 2.0 -

0.80 1.00 1477.8
0.60 1.00 1605.2
0.40 1.00 1662.2
0.80 2.00 1534.6
0.40 2.00 1900.0
0.80 0.50 1425.0
0.40 0.50 1511.4

Inverted

Case #
24 1.75 2.07 823.7
20 2.50 1.01 621.1
21 2.90 0.75 556.0
22 3.55 0.50 481.4
23 4.10 0.37 436.7

Area Ratio A2/A1 = 1.25

Velocity Ratio r = U2/U1

1182.2 1086.4 1086.4 2.2 1.8

963.1 1032.6 1032.6 2.5 1.5
665.0 916.7 916.7 2.7 1.1

1227.7 1692.3 846.2 1.9 2.1

760.0 1396.8 698.4 2.5 1.4

1140.0 785.7 1571.4 2.5 1.4

604.5 694.4 1388.9 2.9 0.8

1441.4 1678.4 808.1 1.0 2.5
1552.9 954.5 937.9 1.0 2.5
1612.3 764.7 1011.0 1.0 2.5
1708.9 573.3 1135.8 1.0 2.5
1790.6 471.9 1247.0 1.0 2.5

=_ Radius Ratio r2/rl = 1.5

Density Ratio s = p2/pl = T1/T2

(Constant Thrust and Constant Mass Flow)

Table 4.1. Operating Conditions for Supersonic Coaxial Jet Calculations.
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Figure 4.1. Calculated mean flow data for normal profile coaxial jets. (a) typical mean
velocity profile, r = .6, s = 1; (b) location of potential core tips and end of merge region
for normal velocity profile operating conditions, Table 4.1
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higherouter velocityandlowertemperatures.Forthe endof the mergeregion,its axial
locationis fairly consistent for a given s but its radial location migrates toward the shear

layer with the smaller AU.

4.1.2 Instability Wave Characteristics

The instability wave characteristics are given in terms of the local growth rates

and phase velocities calculated from the eigenvalue problem. Figure 4.2 shows the growth

rates and phase velocities for the n - 0 mode of the normal profile case r - 0.6 and

s - 1.0 (Case #3 in Table 4.1) for both the inner shear layer (part a) and the outer

shear layer (part b). The results for the n - 1 mode are shown in Figure 4.3. Each line

represents the calculations at a single Strouhal number fDe/U where De and Ue are

the exit diameter and exit velocity of the reference jet or equivalent single jet. All the

stability calculations for the normal velocity profile jets are done at Strouhal numbers of

.06, .12, .20, and .40. With D and U fixed, this means that all the normal profile jet
e ¢

stability calculations are at the same physical frequency for both inner and outer shear

layers. When calculations are completed for far field sound, this insures that they can

be compared at the same frequency. All the stability characteristics shown are of the

Kelvin-Helmholtz type. At Strouhal number .40, no Kelvin-Helmholtz type instability

is found for the outer shear layer in this case for both the n - 0 and n - 1 modes. All

the phase velocities shown are supersonic relative to the ambient speed of sound.

For the inner shear layer n - 0 mode, stability calculations are continued down-

stream as fax as possible until the phase velocity approaches the inner core velocity.

After this point, no stability solutions are found. As shown in Figure 4.2(a), the sta-

bility solution is extended downstream by setting the phase velocity proportional to the

centerline velocity and holding the growth rate constant. Using this approach, the lower

Strouhal number instability waves have little damping with axial distance. Initially, the

inner shearlayergrowth ratesincreasewith Strouhalnumber whilethe phase velocities

decrease.The instabilitywave continuesto grow beyond the end of the outer potential

core and beyond the end ofthe merge region,but they are startingto damp beforethe

end of the innerpotentialcore.

The outer shear layer n -- 0 mode stability characteristics are shown in Fig-

ure 4.2(b). The initial growth rates also increase with Strouhal number and are larger

than the comparable inner shear layer growth rates, but these growth rates decay more

quickly than the inner shear layer growth rates. The outer shear layer phase velocities

are lower than the inner shear layer phase velocities due to lower mean flow velocities,

but they also decrease with Strouhal number as do the inner shear layer phase velocities.

These calculations are conducted until the phase velocity approaches the mean flow ve-

locity at the 5" line. As this happens, the damping rates start increasing toward
merge

larger values. Then, in the stability calculations, the critical point typically goes beyond
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the regionwherethe meanflowvaluesin the complexplaneareaccuratelycalculated
by analyticcontinuation. The calculationsare stoppedand the results are extended

downstream as previously described.

The instability wave characteristics are similar in both the inner and the outer

shear layers for all the Strouhal numbers used in the n - 0 mode calculations. As was

shown from the single jet calculations in the previous chapter, the inviscid calculations

cannot be continued in the axial direction beyond some point after the wave becomes

damped and approximations are used to extend the instability wave characteristics fur-

ther downstream. The n = 1 mode inviscid calculations for the single jet are not found

to have any such limitations. The calculations are continued into the inviscid damped

region in the axial direction as far as the mean flow is calculated. For the normal profile

coaxial jet, the question arises of what happens to the two initially growing instability

waves as the streams merge downstream into a single fully developed jet. This single

jet would only have one n - 1 mode inviscid damped solution. So, could two stability

solutions merge into one stability solution like the two shear layers merging into one

shear layer? Figure 4.3 shows typical results from the stability calculations for a nomal

velocity profile jet. With two shear layers, each having an initially growing instability

wave, only one of the two has a continuous solution into the downstream damped region

of the single fully developed jet. The shear layer with the larger AU supports the lower

Strouhal number waves that are continuous into the damped region and the shear layer

with the smaller AU supports the higher Strouhal number waves. As can be seen from

comparing Figures 4.3(a) and 4.3(b), if the instability wave characteristics are continuous

into the damped region in one shear layer, it is not continuous into the damped region in

the other shear layer. The non-continuous instability wave characteristics become highly

damped in the same manner as seen in Figure 4.2(b) for the _ = 0 mode. Again, in

the stability calculations, the critical point goes beyond the path where accurate mean

flow calculations by analytic continuation are available. The concept of two eigenval-

ues merging is suggested by the behavior of the phase velocities. The inner shear layer

phase velocities in Figure 4.3(a) decrease to the single jet phase velocity as the solution

progresses downstream. In the outer shear layer, Figure 4.3(b), the phase velocities in-

crease to the single jet phase velocity. No indication is found in the continuous damped

eigenvalue solution that any other damped solution is nearby to suggest that the two

solutions merge as the mean flow becomes fully developed.

Figure 4.3(a) shows that the initial growth rates in the inner shear layer for the

n = 1 mode increase with Strouhal number. Unlike the n = 0 mode, these instability

waves begin to damp at or soon after the end of the merge region. The phase velocities

gradually increase with Strouhal number.

For the outer shear layer, the n = 1 mode growth rates shown in Figure 4.3(b)

initially increase with Strouhal number and are much larger than the inner shear layer
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growthrates.But, like the n - 0 mode, these growth rates decay more quickly than the

inner shear layer growth rates, except for the Strouhal number .06 growth rates.

The growth rate and phase velocity results shown in Figures 4.2 and 4.3 are

typical for all the normal velocity profile results. There are differences in growth rate,

especially, due to varying velocity and temperature ratios between the two streams.

But, the characteristics of the instability wave can also be considered in the wavenumber

domain where it is found to be easier to compare the different normal velocity profile

cases.

4.1.3 Wavenumber Spectra

Figure 4.4(a) shows the wavenumber spectra for the n - 0 mode instability wave

characteristics plotted in Figure 4.2 and Figure 4.4(b) shows the the wavenumber spec-

tra for the n -- 1 mode plotted in Figure 4.3. In Figure 3.9 we noted oscillations in the

n = 0 wavenumber spectrum at wavenumbers higher than the main peak that manifested

themselves in the far field directivity pattern. These oscillations are due to insufficient

damping of the downstream propagating instability wave. Since in those previous cal-

culations with insufficient damping, the n - 0 mode far field peak closely resembled the

peak from calculations with sufficient damping, we avoid confusion in the presentation of

the n - 0 mode wavenumber spectrum results and make the plots more clear by simply

cutting off the higher wavenumber oscillations and concentrating on the main peak.

The wavenumber spectrum shows the amplitudes of each wavenumber component

of a growing and decaying instability wave. The spectrum amplitude is related to the

growth rates. In general, the faster the instability wave grows and decays, the wider the

spectrum becomes. Also, the peak amplitude of the wavenumber spectrum is propor-

tional to the peak amplitude of the instability wave. Thus, for an instability wave that

grows rapidly to a high amplitude and decays rapidly will have a wavenumber spectrum

that covers a wide spectrum range and has a high peak amplitude. Alternatively, an

instability wave that grows slowly to a high amplitude and decays slowly will have a

narrow spectrum range with a high amplitude. There are other combinations of growth

and decay and amplitude. The location of the wavenumber spectrum peak is related to

the phase velocity of the instability wave. At a given frequency, the wavenumber is in-

versely proportional to the phase velocity. Thus, the peak of the wavenumber spectrum

will move to higher wavenumbers as the phase velocity decreases. These wavenumber

spectrum characteristics are found in Figure 4.4 when the growth and phase velocity

results in Figures 4.2 and 4.3 are translated to the wavenumber domain.

The wavenumber spectra for the n = 0 mode, Figure 4.4(a), show that the inner

shear layer instability waves have higher spectral peaks than the outer shear layer in-

stability waves. Even though the outer shear layer instability waves had higher initial

growth rates, they grew to and decayed faster from a lower peak amplitude than the inner
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shear layer instability waves. In contrast, the wavenumber spectra for the n = 1 mode,

Figure 4.4(b), show a shifting in peak spectral amplitudes between the two shear layers.

The instability waves in the inner shear layer have the lowest spectral peak at Strouhal

number .06 and the peaks increase in amplitude with each higher Strouhal number. The

opposite is seen for the outer shear layer instability waves where the spectral amplitudes

decrease with Strouhal number. Note that the highest spectral peaks at each Strouhal

number are not necessarily related to those n = 1 instability wave characteristics that

were continuously calculated into the downstream damped region. The maximum am-

plitude is determined from the integration of the growth rates up to the point where the

growth rate is zero. What happens with the downstream growth rate characteristics after

this point has no influence on the maximum amplitude. Hence, the growth rates for the

outer shear layer instability wave at Strouhal number .12, shown in Figure 4.3(b), give a

higher amplitude spectral peak than the inner shear layer instability wave even though

the stability characteristics are not continuous into the downstream damped region.

Given that the instability wave characteristics can be described in terms of the

wavenumber spectrum amplitude and peak location, we will now consider the effects of

changing operating conditions on the instability wave characteristics presented in the

wavenumber domain. We will make comparisons for varying velocity ratio r at constant

8 = 1 and for r = .8 and .4 with varying 8. Wavenumber spectra will be shown at

constant Strouhal numbers where results are available for all operating conditions and

that inflectional instability waves exist in both the inner and the outer shear layers.

Figure 4.5 shows instability wave spectral amplitudes for both inner and outer

shear layers with r varying from .4 to .8. With the Strouhal number fixed at .20, the

results are shown for the n -- 1 mode. Compared to the reference jet, the outer shear

layer wavenumber spectra are generally decreasing in amplitude as r decreases which

lowers AU across the outer shear layer. For the r = .4 case, the compensating effect of

temperature may be a factor in the increased spectral amplitude compared to the r -- .6

case. Even though AU has decreased by about the same amount from .8 to .6 to .4, the

outer stream temperature has dropped much more from .6 to .4 than from .8 to .6. Seiner

et al. [1993] have shown in single jet calculations that the effect of increasing the jet flow

temperature relative to a constant ambient temperature is to decrease the growth of the

instability wave. Thus, in the opposite sense, decreasing the jet flow temperature on

the high speed side of the shear layer increases the growth of the instability wave. A

consequence of holding the thrust, mass flow, and exit area constant is the interaction

of velocity and temperature effects on instability wave growth and decay. One tends

to increase growth and the other tends to decrease it. We end up with results like

those shown in Figure 4.5(a) where the decrease in AU is not as effective in lowering

instability wave growth as the decrease in temperature is in promoting instability wave

growth. For the inner shear layer results, shown in Figure 4.5(b), the temperatures for
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the two streams are the same on both sides of the shear layer. Hence, the wavenumber

spectrum grows in amplitude from r = .8 to .4 where for the inner shear layer, AU

is increased. At r = .4, the wavenumber spectrum has a higher amplitude than the

reference jet spectrum. This result is supported by the work of Michalke and Hermann

[1982] where it was shown that an external flow could increase instability wave growth

rates at higher frequencies for 0 _ U2/AU < 1. For our case r = .4, the inner shear

layer flows lie within these limits, U2/AU = .67. Thus, it is reasonable to see the r = .4
wavenumber spectrum with an amplitude that is higher than the reference jet spectral

amplitude where the jet flow has no external velocity.

A su_ested method for describing the effects of velocity and temperature on

compressible shear layer instability wave growth is to correlate the results by using

the convected Mach number. Zhuang et al. [1990] used this approach to correlate the

nomalized maximum spatial growth rates of disturbances in a planar compressible free

shear layer. Their results were similar to the fit line in Figure A.3. As the convected Mach

number of the shear layer increased, the normalized maximum growth rate decreased

where the compressible growth rate was normalized by the incompressible growth rate

at the same velocity and temperature ratios. This approach works well for single shear

layers. No correlation of instability wave maximum amplitude with convected Mach

number was found in this study for coaxial jets with different inner and outer shear

layer conditions. Since the stability characteristics of one shear layer in a coaxial jet are

affected by the presence of the other shear layer, (This will be shown later in an example

using an inverted velocity profile.) it may be necessary to obtain incompressible growth

rates in coaxial jets to provide useful normalizations of compressible results.

The wavenumber spectral amplitude results for constant r and varying 8 are

shown in Figure 4.6 for r = .8 and Strouhal number .20 and in Figure 4.7 for r = .4

and Strouhal number .12. In general, the shear layer with the larger AU has higher

growth rates; that is the outer shear layer for r = .8 and the inner shear layer for r = .4.

For both outer shear layer plots, Figures 4.6(a) and 4.?(a), the outer stream velocity

differences are much smaller than the temperature differences. Thus, the growth rates

are heavily influenced by temperature. As inferred earlier from Seiner et al. [1993], the

cooler temperature stream has higher growth rates than hotter temperature streams.

For the inner shear layer, using the s = 1 result as reference, Figure 4.6(b) for r = .8

shows that the cooler inner stream relative to the outer stream, s = .5, again results

in higher wavenumber spectral amplitudes. Conversely, for a hot inner stream relative

to the outer stream, s = 2, results in lower amplitudes compared to the 8 = 1 case.

The same trend is seen in Figure 4.7(b) for r = .4. The locations of the peaks in the

wavenumber spectra are not much affected by varying 8 as long as the peak wavenumbers

have supersonic phase velocity relative to ambient. The largest shift in the peak location

is seen for the 8 = .5 curve in Figure 4.7(a). The outer stream for this case is subsonic
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and as a result of the low phase velocity, the wavenumber of the peak is much higher

than the wavenumber of the peaks with supersonic phase velocities.

4.1.4 Near Field Pressure Contours

Examples of near field pressure contours are shown in Figures 4.8 to 4.11. Each

figure compares the near field pressure contours with the lowest far field peak level

from the coaxial jet to the near field pressure contours for the reference jet at the same

Strouhal number. The amplitude levels shown are arbitrary; but for comparison, they

all have the same reference level. In general, the coaxial jet near field pressure levels are

lower than the reference jet pressure levels and the source location has shifted towards

the nozzle. The shift in source location is due to the shortened potential core lengths in

the coaxial jet compared to the reference jet. In Figure 4.8(b), the coaxial jet near field

pressure contour calculation used the inner shear layer instability wave. The other three

coaxial jet contour calculations used the outer shear layer instability wave. Notice that

the contour for the inner shear layer instability wave has a larger directivity angle to the

jet axis than the reference jet. The outer shear layer instability wave near field contours

have comparable angles to the reference jet. This will be more easily seen in the far field

directivity patterns.

4.1.5 Far Field Direetivity Patterns

The calculated far field directivity patterns for each Strouhal number are shown

in Figures 4.12 and 4.13 for the n -- 1 mode. The amplitude level is arbitrary, but,

again, for comparison purposes, all the curves have the same basis. Each figure shows

eight curves: one for the reference jet and seven for the highest far field peak amplitude

generated from each coaxial jet at that Strotthal number.

The far field directivity patterns for _;trouhal number .06 are shown in Fig-

ure 4.12(a). All except one of the curves are based on the outer shear layer instability

wave. The r = .4, s = .5 case is based on the inner shear layer instability wave. Note that

this curve has a symmetrical peak with a maximum amplitude located at a larger angle

to the jet axis than the other seven outer shear layer based curves. This characteristic

difference in peak angle location between inner and outer shear layer based directivity

patterns is seen in all the data. All the operating conditions lower the far field peak

amplitude relative to the reference jet. The trend toward lower peaks based on the outer

shear layer instability waves follows a decrease in r and a decrease in s. For example, the

thick dashed lines show a decrease in peak amplitude for a fixed r = .8 and a decreasing

3.

The Strouhal number .12 far field directivity results are shown in Figure 4.12(b).

More curves based on the inner shear layer im,tability wave are dominant here than at
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Strouhal number .06. All have r = .4. Two patterns are emerging in this figure. One is

the continuance of the pattern seen in Figure 4.12(a). Starting at the reference jet peak,

the peaks decrease as r decreases and as s decreases. These peaks are all based on the

outer shear layer instability wave. The second pattern relates to the far field peaks based

on the inner shear layer instability waves. As the Strouhal number has increased, more

of these peaks have higher amplitudes than the outer shear layer based peaks. At this

Strouhal number, the inner shear layer peaks increase as s decreases. In a sense, these

opposite results for the inner and outer shear layer based far field directivity patterns

as s decreases is expected since the inner high speed stream is getting cooler relative to

the outer low speed stream, promoting instability wave growth in the inner shear layer

and higher far field directivity peaks, and the outer stream is getting hotter relative to

ambient, inhibiting instability wave growth in the outer shear layer and lower far field

directivity peaks.

Figure 4.13(a) shows the far field directivity patterns for Strouhal number .20.

The two patterns established in Figure 4.12(b) are being extended with increasing levels

for the inner shear layer based peaks and decreasing levels for the outer shear layer based

peaks. The r = .6 case has changed to being inner shear layer dominated. This implies

that the amplitude of the inner shear layer peak increases as r decreases or as AU of

the inner shear layer increases. Some of the inner shear layer peaks are now higher in

amplitude than the reference jet.

The highest Strouhal number .40 far field directiv/ty results are shown in Fig-

ure 4.13(b). The inner and outer shear layer peaks follow the established pattern as

Strouhal number has increased. Now most of the inner shear layer peaks are dearly

larger than the reference jet peak. Following Kwan and Ko [1976], using local Strouhal

numbers may show that a more preferred frequency for instability wave growth may exist

in the inner shear layer than in the reference jet shear layer. For example, the inner shear

layer case of r = .4, s = .5 has a local Strouhal number of .19 based on the inner jet exit

diameter and AU across the inner shear layer. The reference jet showed greater growth

at Strouhal number .2 than at .4. Hence, the inner shear layer peaks that are higher

than the reference jet peak may be due to instability waves growing at more preferred

local Strouhal numbers.

The n = 0 mode far field directivity patterns are shown in Figures 4.14 and 4.15.

With two exceptions, the coaxial jet peaks are dominated by the inner shear layer in-

stability wave based peak. The exceptions are the r = .8, s = 2 cases for Strouhal

numbers .12 and .20. The pattern for the coaxial jet peaks is the same for each of the

four Strouhal numbers. The peak levels increase as r decreases and as s decreases. The

same pattern as for the n = 1 mode far field directivity patterns. The levels of the n = 0

mode peaks are generally lower than the n = 1 mode peaks; but many more of the n = 0

mode peaks are higher than the reference jet compared to the n = 1 mode.
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The effects of the different operating conditions on the peak direction is deter-

mined by whether the dominant peak is based on either the inner or the outer shear

layer instability wave. The reference jet peaks and the outer shear layer peaks have their

peak directions at angles closer to the jet axis than the inner shear layer peaks. Though

there are some changes in direction due to operating conditions within the same family

of inner or outer shear layer peaks, the biggest change is due to a change in the dominant

peak from being based on the outer shear layer to being based on the inner shear layer.

Finally, we note for the normal profile cases that the r = .8, 8 = 1 and r - .8,

s = 2 cases are the only ones with far field directivity peaks that are less than the

reference jet for both n = 0 and n = 1 modes and all four Strouhal numbers. This is

especially true for the n = 0 mode. The reference jet levels are higher for the n = 1

modes than the n = 0 modes, so reductions of those levels would be of more immediate

benefit. The typically larger reductions for r = .8, 8 = 1 range from 3 to 8 dB for the

n = 1 modes. The n = 0 modes have reductions of 1 to 5 dB. Tanna [1980] commented

that shock free normal velocity profie coaxial jets could be quieter than the reference jet

for r close to 1 and s < 1. Support for this conjecture appears in the r = .8, s = .5 far

field directivity where reductions in the n = 1 modes are of the order of 10 dB. However,

there are slight gains in level for some n = 0 mode frequencies which may or may not be

signh_cant in terms of overall noise level reductions. In general, the notion that normal

velocity profile supersonic jets may be quieter than the reference jet for r close to 1 and

8 < 1 is supported by this evidence.

4.2 Inverted Velocity Profile

The study of supersonic coaxial jets with initial inverted velocity profiles is con-

ducted with the jets operating at the minimum noise condition. The extensive data sets

from Dosanjh et al. [1969, 1970] and Tanna et al. [1985] showed the benefits of operat-

ing at this point in reducing shock associated noise and the flow, though not originally

perfectly expanded, had the characteristics of a fully expanded flow downstream of a

composite shock near the nozzle exit. The rem',dning noise would be dominated by mix-

ing and thought to be modifiable by changing operating conditions. The criterion that

is to be maintained, however, is the minimum Itoise condition where the inner stream is

slightly supersonic with a pressure ratio of about 1.9. This fixes the inner stream Much

number M 1. Then, from constant thrust, we find that the outer stream Mach number

is given by

(4.5)
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fixing its value. M e
the form

which sets U 1

is the reference jet Mach number. Equation (4.1) can be written in

II M2!A \+

Vl - ['re ,(1 -t- _ii_1)M2 (4.6)

and U2 follows from (4.3). The static temperatures in each stream are
determined from the definition of the Mach number and s is determined from the ratio

of T 1/T 2. Thus, for a given area ratio and a set of reference jet operating conditions, r is

the only variable that sets all the operating parameters at the minimum noise condition

for inverted velocity profile jets. The parameters chosen for study are given in Table 4.1.

The presentation of the inverted velocity profile results follows the same format as

the normal profile results. There are similarities in the results that are discussed in the

section above on normal velocity profiles and will not be repeated. We will concentrate

on discussing features that are important for understanding the inverted profile results.

4.2.1 Mean Flow Results

A typical inverted velocity profile result is shown in Figure 4.16 in the same

format as the normal velocity profile. In this case, when the two shear layer merge, a

local maximum velocity exists in the flow that moves towards the jet axis before the jet

becomes fully developed. The location of this velocity is labeled Urea z in Figure 4.16(a)

and extends from the end of the outer potential core tip and moves to the jet axis

downstream. This plot is very similar to that shown in Au and Ko [1987] for measured

data from a subsonic jet. Along with the edges of the inner and outer potential cores,

the figure shows the location of the half velocity point between the maximum velocity

and the outer edge velocity of the outer shear layer.

The basic mean flow properties for each of the five calculated inverted velocity

profiles are shown in Figure 4.16(b) in terms of the location of the outer potential core

tip, the location of the inner potential core tip, and the location where U reaches
maz

the jet axis (also called the reattachment point). For the given operating conditions that

result in fixed Mach numbers in both the inner and outer streams, as r increases and

temperatures adjust accordingly, both potential cores shorten in length. The location of

U on the axis, however, moves further downstream as the outer stream velocity has
WI{lX

increased.

4.2.2 Instability Wave Characteristics

Figure 4.17 shows the instability wave characteristics of the n = 0 mode for both

the inner and outer shear layers of an inverted velocity profile with r = 1.75 and s = 2.07
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(Case #24 in Table 4.1). The n - 1 mode instability wave characteristics are shown in

Figure 4.18. The inner shear layer instability wave characteristics are similar for both

the n - 0 and n - 1 modes, part (a) of each figure. The growth rates have about the

same initial values for both modes and the initial growth rates increase with Strouhal

number. The phase velocity is fairly constant in the potential core region with a slight

decrease with Strouhal number. The instability waves become damped near the end

of the outer potential core for most Strouhal numbers and before the end of the inner

potential core for the lower Strouhal numbers. The inner shear layer ends when U
maz

reaches the jet axis and thus ends any stability calculation of the inviscid inflectional

type of growing or damped waves. In order to complete the damped behavior of the

inner shear layer instability wave, the damped characteristics are extended downstream

in the manner previously described.

The outer shear layer instability wave calculations are completed in the same

manner as a single jet shear layer. The n - 0 mode calculations, Figure 4.17(b), are

completed until the phase velocity approached U . The approximate extension of themaz
instability wave characteristics is added after this point. The n - 1 mode calculations are

completed into the damped region as far downstream as the mean flow is available, see

Figure 4.18(b). Both the n -- 0 and n = 1 mode characteristics show abrupt changes at

the locations where the inner and outer potential cores end. They are most pronounced

in the n - 1 mode growth rate curves. The initial growth rates increase with Strouhal

number; but as the instability wave solution progresses downstream, the growth rates

decrease more quickly as Strouhal number increases. All the instability waves become

damped before U reaches the jet axis. For the phase velocity, the n - 0 mode
rnaz

shows them staying within a small range for all the Strouhal numbers. In contrast, the

n -- 1 mode phase velocities spread out with changing Strouhal number as the instability

waves progress downstream toward their peak and then damp out. In all cases, the phase

velocities are supersonic relative to ambient conditions.

4.2.3 Wavenumber Spectra

The wavenumber spectra for the growth rates and phase velocities plotted in

Figures 4.17 and 4.18 are shown in Figure 4.19 for both n = 0 and n = 1 modes. It is

immediately seen that the outer shear layer instability waves have much larger amplitudes

than the inner shear layer instability waves. This is true for all five inverted profile cases.

Hence, we will concentrate our remaining discussion on the instability waves in the outer

shear layer and their noise generation characteristics.

Figure 4.20 shows all the wavenumber spectra for the outer shear layer, n _ 0

mode, instability waves for the four Strouhal numbers. As r increases, the spectral peaks

continually increase for the Strouhal number .06 case. As Strouhal number increases, we

see that the peak amplitude is maximum for r - 3.55 and lower at other values. The outer
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shear experiences the conflicting effects on the growth of the instability wave of velocity

and temperature. With increasing r, the outer stream maximum velodty increases which

increases the radial velocity gradients and increases the growth rates of the instability

wave. In addition, to maintain mlnlmllm noise conditions, as r increases, the outer stream

temperature increases, also. The increased temperature has the tendency to decrease

growth rates. Somewhere in the vicinity of r = 3.55 for the higher Strouhal numbers,

a balance between these two effects exists. Below this point, the high outer stream

velocity has a greater impact, and above this point, the high outer stream temperature

has a greater impact. The change in peak amplitude with increasing r is accompanied

by gradual increases in the wavenumber of the peak. This is indicative of a decrease in

phase velocity for the instability wave.

The wavenumber spectra for the outer shear layer, n = 1 mode, instability waves

are shown in Figure 4.21. These peaks grow in amplitude and change little in wavenumber

location as r increases. Unlike the n = 0 mode, the n = 1 mode instability waves are

not being affected as much by temperature as by velocity. For Strouhal numbers .06

and .12, Figure 4.19 shows that the n = 1 mode dearly has higher amplitudes than the

n = 0 mode. These n = 1 lower Strouhal number instability waves become even more

dominant as r increases. At the two higher Strouhal numbers, Figure 4.19 shows that

the n = 0 mode is dominant over the n = 1 mode for the lowest inverted profile velocity

ratio, r = 1.75. However, the n - 1 modes grow to very dominant amplitudes over the

n = 0 modes as r gets larger than 2.9.

4.2.4 Near Field Pressure Contours

The near field pressure contours generated from the outer shear layer, n = 1

mode instability waves of the inverted velocity profile case with r = 1.75 and s = 2.07

(Case #24 in Table 4.1) axe shown in Figures 4.22 and 4.23 for each of the four Strouhal

numbers. These fig_tres should be compared to the reference jet near field pressure

contours shown in parts (a) of Figures 4.8 to 4.11. We see that these coaxial jet contours

have higher levels at all Strouhal numbers and that the directionality has shifted towards

downstream from the reference jet direction. Since the directional characteristic of the

near field pressure contours is related to the location of the peak in the wavenumber

spectrum, the near field pressure contours for higher r, which showed little change in

peak location as seen in Figure 4.21, are the same as the ones shown for r = 1.75, but

with much higher amplitudes.

4.2.5 Far Field Direetivity Patterns

The high amplitude levels already shown :in the wavenumber spectra in Figure 4.19

are now confirmed in the far field. Figure 4.24(a) shows directivity for the n = 0 mode
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and Figure 4.24(b) shows directivity for the n = 1 mode. The amplitude levels have the

same basis as the normal velocity profile far field plots shown earlier. The wavenumber

spectra in Figure 4.19 have been translated to the far field with the same amplitude

relationship between the peaks and the spectral peaks with higher wavenumber have

larger angles to the jet axis in the far field. All the peaks are closer to the jet axis than

the reference jet peaks for both n - 0 and n = 1 modes. (Compare to reference jet

results in Figures 4.12 to 4.15.) This confirms what is seen in the near field pressure

contours in the previous section.

The far field directivity results for all the inverted velodty profile cases are shown

in Figure 4.25, for the n - 0 mode, and in Figure 4.26, for the n - 1 mode. Both

figures only show directivities for Strouhal numbers .20 and .40. As expected, the levels

are much larger than the reference jet, which has peak levels less than the lowest level

shown in these figures, and follow the pattern set in the wavenumber spectral plots.

The directivity for the n - 0 mode shifts toward the jet axis as r increases. The peak

amplitude level increases as r increases from 1.75 to 3.55 and then decreases at r - 4.10.

For the n - 1 mode, the amplitude continually increases with increasing r and the

direction gradually shifts toward the jet axis. Tanna [1980] concluded that shock free

inverted velocity profile jets were noisier than the reference jet at high frequencies, but

significantly quieter at low frequencies. The results from Figures 4.22 to 4.26 show only

higher amplitude levels than the reference jet _nd for the most part as r increases, the

noise level increases. Thus, we have not found any noise reduction benefit for the chosen

operating conditions. The minimum noise condition constraint has fixed 8 for a given

area ratio. If there is any benefit to having a different s at the same r, the area ratio

needs to be changed.

4.2.6 Discussion

The results we have shown for inverted vdodty profile supersonic coaxial jets have

a fixed area ratio of 1.25 leaving the velocity ratio r as the only independent variable

for determining operating parameters for the given test conditions. Those conditions are

that the inverted profile jet is operated at minimum noise conditions with total thrust,

total mass flow, and total exit area equivalent to the reference jet. From the chosen

operating conditions, we calculate instability w_ves with higher amplitudes in the outer

shear layer of an inverted velocity profile jet than the amplitude for the instability waves

in the reference jet shear layer. The calculations are conducted for different jets at

constant physical frequency. A concern with this approach that exists for both the

normal velocity profile jets and the inverted velocity profile jets is that the unstable

characteristics of the jet shear flows are scaled with constant Strouhal number. Under

the constant Strouhal number approach, the stability characteristics would be similar

for jets with constant Strouhal number but ]Dave different velodties, diameters, and
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frequencies. Thus, stability characteristics that have been described as different for

different operating conditions, but at the same physical frequency, may be similar if

results are compared at the same local Strouhal number. With that in mind, we ran a

test case where a single jet shear layer is compared to the outer shear layer of a coaxial

jet.

Using the inverted profile case with 8 --- 1.01 (Case #20 in Table 4.1) to define

the single jet operating conditions (U - 1552.9 m/s and T - 937.9 K), the single jet

mean flow was numerically calculated starting with the same initial conditions as the

outer shear layer of the coaxial jet. In the mean flow calculations, the outer shear layer

is unaffected by the inner shear layer until the shear layers merge. Hence, by starting

with the same initial conditions, the single jet shear layer and the outer shear layer of

the coaxial jet had the same spreading rates until the outer shear layer merges with the

inner shear layer.

The calculated instability wave growth rates and phase velocities for the single

jet and the coaxial jet mean flows are shown in Figure 4.27. The Strouhal number

fD¢/U is based on the equivalent jet operating conditions and it is used to calculate

the instability wave characteristics of the outer shear layer of the coaxial jet. The single

jet uses U2, the outer stream velocity of the coaxial jet which is the same as the single

jet velocity, to calculate the Strouhal number. Converting the Strouhal number .06 to

outer shear conditions, we get .05. Thus, the two lower Strouhal numbers are the same

in terms of outer shear layer conditions which ._re the same as the single jet shear layer

conditions. The expectation is that, initially, the two shear layers would have the same

stability characteristics. However, the calculations show that the single jet has lower

growth rates and higher phase velocities than the outer shear layer growth rates and

phase velocities. The same relationship exists between the two results for the Strouhal

number .40 calculations. Thus, it appears that matching Strouhal numbers based on

outer stream conditions for a coaxial jet and based on a single jet with the same mean

flow conditions is not sufficient to get similar stability characteristics. The inverted

velocity profile in a coaxial jet affects the stability characteristics in the outer shear

layer. The resulting growth rates are initially larger than the growth rates of a single jet

with the same shear layer spreading.

At first glance, it would seem that the increase in noise levels for inverted velocity

profile jets compared to the reference jet is in contradiction to data given in the refer-

ences. It must be recalled that most of those claims were for shock containing jets where

overall levels were reduced by minimizing shock associated noise. Though Dosanjh et

al. [1969, 1970] claimed some reductions at all frequencies, Tanna et al. [1985] did not,

citing nozzle differences. They both, however, ran their experiments with nozzle exit

area ratios less than one. Nozzle exit area ratio is the only other factor available besides

velocity ratio r for affecting operating parameters. In our study, it was held fixed at
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1.25. To test for any benefits of reducing the area ratio, we ran a test case with area

ratio less than one.

Figure 4.28 shows the results from stability and far field directivity calculations

for the case with area ratio 1.25 and r - 4.10 (Case #23 in Table 4.1) and a case with

area ratio .5 and r -- 4.10. The operating conditions for the latter case have been held

to the same total thrust, total mass flow, and total exit area conditions relative to the

reference jet as all the other inverted profile cases. The resulting operating conditions

are U1 - 492.9 m/s, U2 - 2020.9 m/s, T 1 - 601.1 K, and T2 -- 1017.0 K. This increases
the temperature ratio s from .37 for area ratio 1.25 to .59 for area ratio 0.5 and the

outer stream Mach number increases to 3.2. To make this comparison test, we chose the

case that generated the largest far field directivity levels of any of the inverted profile

calculations. Hence, any benefits to reducing area ratio appears in a worst case scenario.

The calculations are performed at Strouhal number .40 for the n -- I mode. The stability

characteristics for the two cases are compared in Figure 4.28(a). Even though the outer

stream has a higher initial velocity in the lower area ratio case, its smaller thickness

results in a shorter potential core and increased mean flow spreading when the shear

layers merge. This results in a faster decrease for the growth rates of the outer shear

layer instability wave for the lower area ratio case than for the higher area ratio case.

The lower instability wave amplitude translates to a lower far field directivity peak as

shown in Figure 4.28(b). Thus, for our worst c_se, we have shown some benefit of using

coaxial nozzles with area ratios less than one compared to coaxial nozzles with area ratios

greater than one.
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CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

The noise generation from supersonic coaxial jets has been studied in this paper by

extending the instability wave, noise generation model for single stream, axisymmetric

jets to dual stream, coaxial jets. For high speed, perfectly expanded, axisymmetric

jets, the instability waves or large scale coherent structures dynamically control the

development of the free jet shear flow and when the instability wave phase velocity

exceeds the ambient speed of sound, these waves are the dominant source of mixing

noise radiated into the downstream arc of the jet. Linear instability wave analysis is

applied to the jet shear layer to obtain the characteristics that describe a growing and

decaying instability wave and, subsequently, predict the radiated noise. These concepts,

which have been applied to single jets with a single spreading shear layer, are now applied

to a coaxial jet with two spreading shear layers.

Much of the theoretical work on the s*_ability of free shear flows relies on the

analytical definition of the mean flow in order to solve for the stability characteristics.

Experimental measurements of shear flows provided evidence for functional forms to de-

scribe the mean flow in stability calculations. Such mean flow data are lacking for two

stream coaxial jets, especially at supersonic conditions. The data that are available are

not sufficient to develop analytical expressions for mean flow properties of coaxial jets

that smoothly transition from two streams to one fully developed jet downstream for

both normal velocity profile and inverted velocity profile cases. Hence, it was neces-

sary to develop a numerical scheme to calcular.e the mean flow properties of a coaxial

jet with two initial shear layers that expanded and merged in an orderly fashion in the

downstream direction. The development of a turbulent, axisymmetric free jet was as-

sumed to be governed by the Reynolds averaged, compressible, parabolic boundary layer

equations. To complete this set of equations, a turbulence model was necessary. Any

turbulence model chosen for these calculation,,; would have required modification and

calibration to obtain reasonable results for bot]_ normal and inverted profile coaxial jets.

For expediency, a modified and calibrated mixing length model was used to represent the

turbulent stresses and obtain an effective viscosity. The resulting mean flow calculations

gave good qualitative resemblance to measured single and coaxial jet flows.

The stability analysis was completed for a slowly diverging free jet shear layer with

the assumption that the mean static pressure was constant. To lowest order inside the
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jet, the analysis resulted in an eigenvalue problem based on the compressible Kayleigh

equation that gave local growth rates and phase velocities at each axial location as the

mean flow developed. These local stability characteristics were used to calculate growing

and decaying instability waves in the jet shear layers. Outside the jet, the instability

wave was the source for near field pressure disturbances and for those instability wave

components with supersonic phase velocities relative to ambient, the instability wave was

the source of far field radiated noise. The results from stability calculations conducted for

single Mach 2 jets in this study using numerically generated mean flow profiles compared

favorably with results from studies using analytical formulations to describe the mean

flow. Comparisons were also made for our analysis of instability wave noise generation

in coaxial jets to far field noise data from low Mach number coaxial jets. The directivity

of the calculated far field peak agreed with measured directivity.

With the ability to numerically calculate mean flow profiles for both normal ve-

locity profile and inverted velocity profile supersonic coaxial jets and to use those results

to calculate the stability characteristics of both shear layers, we conducted a paramet-

ric study of the effects of various operating conditions on the instability waves in and

the subsequent noise generation from these jets. The scope of the study was limited to

shock free flow conditions from a fixed area ratio nozzle. This allowed us to concentrate

on the effects of modifying the mean flow profile shape in a coaxial jet as a means to

reduce mixing noise. The normal velocity profiles were studied with variations in both

velocity and temperature ratio between the two streams. The inverted velocity profiles

were studied at minimum noise conditions. This fixed the temperature ratio for a given

velocity ratio. The conclusions from the normal velocity profile study are:

o The predicted noise reductions for normal velocity profile coaxial jets depended on

operating conditions and frequency. For most operating conditions, the radiated

noise levels increased with Strouha] number and became higher than the reference

jet noise levels.

. Over the Strouhal number range of 0.06 to 0.4 used in this study, noise reductions

were found at all Strouhal numbers within that range when the velocity ratio was

0.8. Noise reductions were noted for both normal and inverted temperature profiles.

For the practical case of a normal temperature profile, the noise reductions ranged

from 2 to 8 dB.

° Using inviscid linear stability analysis, the stability characteristics of two, initially

growing, n - 1 mode, instability waves, one in each of the two shear layers of a

normal profile jet, do not merge downstream as the jet flow expands into a single

fully developed jet. One instability wave will rapidly damp out and the other

instability wave will damp out in a smooth transition according to the stability

characteristics for the single jet.
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The conclusionsfrom the invertedvelocityprofilestudyare:

° The inverted velocity profile coaxial jet radiated more mixing noise than the refer-

ence jet when operated at conditions for minimum shock noise and with area ratio

greater than 1.0.

o The minimum noise condition restricts the choice of operating conditions. When

operating at minimum noise for a given velocity ratio, it was inferred that choosing

the area ratio to minimize the length of the outer stream potential core would result

in the least radiated noise.

. The amplitudes of the inner shear layer instability waves were significantly less than

the amplitudes of the outer shear layer instability waves. Hence, their contributions

to peak far field noise generation can be ignored.

. The initial stability characteristics of the outer shear layer were affected by the

presence of the inner shear layer in the mean flow profile. The initial growth rates

for the instability in the outer shear layer were increased above the growth rates

for the instability in a single jet with the same shear layer.

The limitations of this study are many. The restriction that the coaxial jets be

compared to a reference jet at the same total thrust, total mass flow, and total exit area

results in instability wave growth and decay thst is affected by interactions between ve-

locity and temperature. The combining of these effects through convected Mach number

correlations did not prove useful either because of the complications with two merging

shear layers with different velocity and temperature ratios or that growth rates need to

be normalized by incompressible coaxial jet growth rates at the same velocity and tem-

perature ratios. Another restriction was the fi_ng of area ratio to reduce the number

of independent variables for the given reference jet conditions. This restriction was not

especially noticeable in the normal velocity profile study since variations in velocity and

temperature ratio allowed a varied range of operating conditions to be achieved. When

the additional restriction of minimum noise condition was added to the inverted veloc-

ity profile study, fixing area ratio reduced the number of independent variables to one.

Thus, the possibility of missing any optimum operating condition for reduced mixing

noise was increased and in this study, no optimum was found. The use of the mini-

mum noise condition was an acknowledgement that real supersonic flows would contain

shocks. The noise associated with shocks is at a minimum for those operating conditions

and the remaining noise is from mixing, which we are attempting to reduce. Thus, the

suitable noise levels from a reference jet may not be the purely mixing noise levels in

this study, but may require a shock contalnin_ reference jet. Given that this study is

a first attempt to analyze the instability wave :loise generation from supersonic coaxial
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jets with numerically generated mean flow profiles, we have only scratched the surface

of the many variations that exist in this problem and further research is necessary.
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CALIBRATION OF

MIXING LENGTH MODEL FACTORS

A.1 Incompressible Factor C1

For given flow conditions, the mixing length model must provide the effective

viscosity that causes the jet shear layer to spread. C 1 is the only factor available

for adjustment in order to get the proper spreading rate when the flow is incompress-

ible. Many have used experimental evidence and arguments about large-scale structures

dominating the development of turbulent shear layers (Some recent references are Di-

motakis [1986], Messersmith et al. [1988], Vapamoschou and Roshko [1988], Dimotakis

[1989], Sullins [1989], and Goebel and Dutton [1991]) to develop a prediction for the

incompressible vorticity thickness growth rate _/z as a function of the velocity ratio r
and the density ratio s,

6 Ii_rl(l+_" )
= .088 (A.1)

where r = U2/V 1 and , = p2/p 1. The constant .088 used here is an average of the

constants from the above references when all were converted to vorticity thickness growth

rate either from information given in the reference or from assuming an error function

shape for the velocity profile. Though (A.1) was developed for a planar shear layer, it

was assumed to hold in the initial core region of a jet where there is a constant velocity

at both edges of the shear layer.

The calibration of C 1 was carried out for a range of expected r and s values. Given

r and 8, C 1 was varied until the calculated vorticity thickness growth rate in the core

region agreed with that predicted by (A.1). To insure that #T dominated the effective
viscosity and the flow was essentially incompressible, the calculations were carried out

on a low speed, large diameter jet such that the Reynolds number was greater than 106

and PT > > p" The resulting family of curves were correlated to develop an equation for

C 1 for r < 1 and an equation for r > 1. They take the form,

Cl(r,s ) = A(r) + B(r)v_ + C(r)s
(1 + v_(1 + rye)

(A.2)



where for r < 1

A(r) = 6.5919× 10-2 + 1.1918x 10-1r - 4.1855× 10-2r 2

B(r) = 1.0880× 10-1 - 2.3578x 10-2r Jr6.5642× 10-2r 2

C(r) = 3.1013x 10-2 Jr1.6420× 10-1r - 5.8217x 10-2r 2

and, for r > 1

A(r) = 1.0195x 10-1 _c5.1507x 10-2r - 1.6000x 10-3r 2

B(r) = 6.0287x 10-2 + 7.5160x 10-2r + 1.3818x 10-3r 2

C(r) = 7.2397x 10-2 + 7.5334x 10-2r - 6.2101x 10-4r 2

These resultsare plottedin FigureA.I forr < 1 and in FigureA.2 forr > I.
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A.2 Compressible Factor C2

Figure A.3 shows a plot of normalized vorticity thickness growth rates versus

convected Mach number for compressible shear layers. The data are taken from the

experimental measurements of Ikawa and Kubota [1975], Lau [1981], Chinzei et al.

[1986], Messersmith et al. [1988], Papamoschou and Roshko [1988], Schadow et al.

[1989], S_dlins [1989], Samimy and Elliott [1990], Goebel and Dutton [1991], and Wan-

tuck et al. [1991]. If necessary, the data were converted to vorticity thickness growth

rate either using information given in the reference or from assuming an error function

shape for the velocity profile. A calibration fit to this data is given by

_ , -i+.785 e -2 c -I
_o

(A.3)

where the convectedMach number is

V_ 1-rl

Me=M1 l+v/_ , (A.4)

_l_o is the incompressible spreading rate for the same r and s, and M 1 is the Mach

number for the stream with velocity U 1.

For given r, s, and M1, the factor C 2 was adjusted, allowing C 1 to take on its
value defined by (A.2), until the calculated corr_pressible vorticity thickness growth rate

in the core region agreed with the value predicted by (A.3), when _! is identically given
olo



by (A.1). The results for C 2 were correlated with Mc to get the following equation:

This equation and the data are plotted in Figure A.4.
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(A.5)
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SMOOTHING

As the flow of an inverted velocity profile jet progresses downstream, the outer

core eventually ends and the velocity profile exhibits a local maximum between the

two merging shear layer until the jet becomes fully developed further downstream. An

example of this merging velocity profile is shown in Figure B.1 along with its [i)u/Or[

profile. Obviously, the [au/Or] profile goes sharply to zero at the local maximum; a

condition that is unrealistic and unacceptable for any turbulence model that depends on

local [Ou/Or[ conditions. A simple solution to this problem is to smooth this profile.

To avoid the admonition in Press et al. [1986] that smoothing may be more art

than science, we follow the example given in Press et al. [1986] (Section 13.9) and consider

the I_u/Orl profile as a signal whose high frequency components need to be filtered out.

In a Fourier sense, significant presence of high frequency components are necessary before

the total signal will abruptly change directions as it does at the zero point. The Fourier

Transform of the derivative profile in Figure B.l(b) is shown as the unfiltered original

spectrum in Figure B.2(a). To digitally filter out the high frequency components, we

chose a low-pass Gaussian filter represented by

j 2

where j is the index of the discrete spectral points and PTS varies the width of the filter.

A small PTS results in a narrow filter and vim versa. The advantage of the Gaussian

filter compared to other digital filter functions is that the filtered [au/ar[ profile goes

smoothly to zero with no small oscillations. These would cause unstable behavior in

the numerical mean flow calculations. Both the filter shape and the filtered spectrum

are shown in Figure B.2(a). As a compromise between maintaining the peak levels in

the IOu/arl profile and smoothing the zero dip. PTS was set to 50. As can be seen in

Figure B.2, a significant amount of high frequeacy content has been removed from the

spectrum in order to smooth out the zero dip ht the lau/ar[ profile.
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DETAILS OF INTEGRAL EVALUATIONS

In this appendix, we outline the steps for asymptotically evaluating integrals found

in our problem. A full explanation for the procedures involved will not be given here as

they are well documented elsewhere. (E.g. Erdelyi [1956], Skudrzyk [1971], Bender and

Orszag [1978], Crighton et al. [1992])

C.1 Evaluation of Equation (3.45)

We want to evMuate (3.45) asymptotically at the intermediate limit. We begin

oo
1

--oo

with the integral

and note that the integralhas the form ofa Laplace integralwrittenas

(c.1)

The asymptotic behavior takes place as I/_ --+co or equivalently,e --_O. Now, the

functionsin the integrandof (C.2) axe in genera2complex and the path of integration,

because of Cauchy's theorem, can be continuouslydeformed as long as the path doesnot

passthrough a branch cut.Hence, a path must be found such thatitpassesthrough the

point s = _,where el(8)= 0. The integrandexponenti_Ilydecays away from thispoint

along the integrationpath assuming f(8)isslowlyvarying compared to the exponential

function,allowingthe solutionof the integralto be based on thismaximum region.

Such a point in the complex plane iscalleda saddle point where both (_ and s are

complex. Once the saddlepointisfound,we can Taylorexpand the integrandabout this

point,revealingintegralsthat axe directlysolvableoverthe (-co, co) range to which the

integralsaxe extended. The resultsfor e(s) having a quadraticdependence on W have

been publishedin Dingle [1973]to many terms. Hence, to O(E)

; (c.2)
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where f, O, and their derivatives with respect to 8 are evaluated at the saddle point.

Now, we only need to find the f and 0 terms to substitute into (C.3).

Using (3.49) and (3.51), it easily follows that

e"(_) = iJ(_) (cA)

Om ('s) = ia t'(_) (C.5)

o(i_)(_)= ia" (7) (c.6)

and

/(7) = _i0(_) + e21(_) +...

= + +...

f'(7)= _(_) +_(_) +...

Substitute (C.4) to (C.9) into (C.3) and carry out the algebra to get

wh_e

C.2

• tt 2

,5 [. (_)] . ig"(_) _ (_)
B(_) = .41(_)+ 24 [J(_')l 3A0(8-) 8 [ t(_.)12 0

iJ'(_) i

2 [J(_)]__i'(:_)+ 2 r(_)_"(_1

Evaluation of Equation (3.44)

Once (C.IO) is obtained, we substitute it into

4= i.2=2 _ _ oo j . oo
{$2-2/N_2 -i I c'_ M2.'_×

q - e Pc M_ Vc_ &7

(c._')

(c.8)

(c.9)

(ca0)

(C.11)

(c._2)
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and carry out the same saddle point procedure as above. After the substitution, equation

(C.12) has the fore

I (1) -1/ S(rl)eO(_)/ed_ I (C.13)p [2_dl/2

with the saddle point method asymptotic form

[1l eo, {, ,o 0, o 21},, _ _.(0.)_ 24(0,,)_J
(c.14)

where f, 0, and their derivatives with respect to _/axe evaluated at the saddle point

where • = s and _7= a(s).

Using the results from (3.53), we get that

d20 1

d2 - ial

d_e a"

d_ 3- i(_l) 3

d40 a" 3 (a") 2

"_ 4= /(a,) 4 + /(a,)5

(c.15)

(c.16)

(C.17)

where primes denote derivatives with respect to s. In the above, we used the chain rule

and noted that at _ = 8, _/= a(8)

ds 1
D _ t°d_ da(s) a

Comparing (C.13) to (C.12), we see that f(_/) has the form

.f(,D
i]r-iu(_)'l/2 L1+i _,

f ( e2-21N F2 4_ 1.2_2 "_-i½@ooM2_oo

x _L - _ P°°_S%)

q - E poo.a'lj voo,) .
(C.18)



To begin the expansion of S07), consider the factor

¢2-2/NF2 4 2_.2 \-i½ePoo M2"_ _oo

and write it as
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(C.19)

_(_)= (_2- _oo._) 1/2 (c.24)

q (n2 2._2 ,,.t_2_ '_z/2= - _ Poo%%"oo) (c.25)

% = _,- _.%. (c26)

Both terms in fl can be expanded using Taylor's series.

z I ( 2+a =l+zina+ z2,1aa) ..- (C.20)

1
(i- _)a = 1-a_ + _a(a- 112 + ... (C.211

Substituting the appropriate values for the dummy variables a and z, (C.19) simplifies
to

fl = l-ieine'_ _ -ie'_ M._ _ In e-1/N_oo 3 _ oo oo 3 _ oo

1 2_2 ,.4-_2_2

+ O ($3[inel3) . (C.22)

Next, consider the Haakel function

- e p_v_j vc¢ ) (C.23)q

where
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Expand H (1) about e = 0.
q

0q 1)(z) e H 4- O (2)H _)(_)= Z _)(_) +_ H +_ _=o
¢--0 ¢--0

where the derivative terms with respect to e are found from (C.25) and the argument of

the Hankel function in (C.23)

_ 2u

O__q= tpooM_ w vce , n = 0

Oe 1 ._2 . 4_2_2
-_epcc._j_ r_, n # 0

2._2
-- M.v

ePoo 3 oo

-2/N_2 2_ , 2_2 ,_1/2"- _ voo_j %o)

Beginning to evaluate terms at e = 0 we get that

q-'n

O_qq= tpooM _ w vc¢,

Oc O,

Oz
_O°

O_

n=0

n¢O

Since aq/OE ¢ 0 at n = 0, e = 0, we must find OHj,/Oqt__ at q = 0. The solution is found
q

in Abramowitz and Stegun [1965] Eq. 9.1.68.

Therefore, the expansion of (C.23) is

H_ 1) (i)_(_?)(-2/N_2 62-_ooM_v-2)½)= H(1)(,_(_7)6-1/N_)

_ 2_- _r (1)
4- E6noPooM'jwr/Voo _ tt n (i)_(Y) z-I/N _)

+O(e 21 (C.27)
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where

1, n=O6nO =
O, n#O

Substituting (C.22) and (C.27) into (C.18), expanding, and combining terms, we get

2 {,.-1/N_ _ _ 2_- _r
- ie-_ M._ _ In \_ +_60PooM_wvoo _oo37oo

: e voo 0

B(-_)

+,[_,<,,(,)1,/_,,<'>(,_,(,,),-'_",)+o¢,,,,). (c.28)

When S(_/)issubstitutedinto(C.14),thedezivativesoff with respectto_/must be

determined.Much a_ebra isavoidedby notingthatE multipliesSQI) and itsderivatives

to produce the following:

[-,<,'_]
(c.29)

(c.30)

:, _ [_,<,_,_1,/,]_i'_(,,,o,w'/",)

+ 2° ( A0(_)o. [_,o,_,],,,).4,.<:>(,_.>.-"".)
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+ _iQ(_) 02 H(_) ][_/d(_)11/2 _2 n {'Ac_I)8-1/N_) nu0 (e2].n_). (8.31)

The derivativeswith respectto _}must be carriedout and the resultsevaluatedat the

saddlepoint. To complete the derivativesof the Hankel function,we have to calculate

the derivativesofA(_})from (C.24).In additionwhen the secondderivativeofthe Hankel

functionappears,we use Bessel'sequation to make the substitution:

After much algebra, the evaluations of (C.29), (C.30), and (8.31) at the saddle point are

.:=.[_,o,11/,,,__) +

0f _ [ :A__.0_1A0a" _

2 0

.-,,-,(o+,,,.,o (_,,,,)+ 0 _-_u) oo j oo OOl o

_,,._(,_(o:',",)÷o(:_..)°(C.33)

e°_ f_ , ,e [I _--_--L. (,)2 _ _°J"(,/)3 _, ,_'J' s'_°("")2i-_

÷ _i°,-,(o,)2)

2oA(-)2 (1_+
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x
-I/N_ a

A(a)4 OIE-1/N_ )

H(nl){_iA(o_)e-1/N_)-i-O(_21nE) (C.34)

where primes denote derivatives with respect to 8. To complete the evaluation of (C.28)

at the saddle point, we will note that

fCw)- f(a), (C.35)

,40(_) "- ,40(s), (C.36)

o_l(_') - a'Cs), (C.37)

B(3)- B(s). (C.38)

We now have all the factors in (C.14) e_luated at the saddle point. After sub-

stituting(C.15)to (C.17) and (C.32)to (C.38)into(C.14),expanding and combining

terms,the flnM resultisgivenin (3.54).

C.3 Integrals in Higher Order Matching

The integralsin (3.71)axe solvedafterthe zeroth-ordervaxiablesare available.

From the zeroth-orderequations,we get

% - _ _0 + _P0
I_'_. _2.

_o-_ _o + .Mj Po

(C.39)

(C.40)

(C.41)

(C.42)

where allthesevariablesaxe solvedinterms ofi_0 aftersubstitutionfor00. From (3.24)

and (3.58),P0 has the form

PO = A0(s)(_(r' s)" (C.43)

Each variablehas itsown eigenfunctionform like(C.43),but we can also put them in

terms of _'_. Thus,

T_O--Ao(S)¢l(r's) =_ ¢1 - _ _r

_b0--A0(s)¢7(r's) ::*" ¢1-- "; _' ¢1'1p

(c.44)

(c.45)
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u 1 0-_a¢'lP _ p

% = Ao(_)¢_'(r's) _ q = _ ar 0r + _5¢x ' (C.46)

(c.4_)

The outer integral in (3.71)

_t = J w(_,_) d_,
I"

(c.48)

where _'P represents either H (1) or H (2), is written as
R n

lout = _ Y_ + voo + _ R + in R + i.Ru_ ¢Pdy (C.49)i Oy _ poo y w_

where the limits have been dropped. From (3.65) to (3.68) after substituting in from the

right side of (C.44) to (C.47) and multiplying through by Poo' we get

= --_---_--- - (c.51)_.____ --o tP
Rwoo r _ Or tel OorOs k_ 1] r 2 r_ _1

oo

_N.Se_N_ o ,A o ,) o

0 [A.a p_

=_'fi M2_CX_A O_-'fi M_U-ooO (Ao(_)--_ _¥u-_¢l )c_ jr OOr

a._ (C.52)

Rp_ (C.53)

(Note in (C.49) that y is a dummy variable and that when we refer to any term in the

integrand, we will use the r variable.) After (C.50) to (C.53) axe substituted into (C.49),

we eliminate terms with 1/r and 1# 2 by using (3.21) with _P.

-_e=r or-_- r or
2

-r Or----_ Or

-fi M2.w-2 _P+a2_P
oo 3 oo

(C.54)

(c._5)



162

Examination ofthe resultingterms shows that derivativeterms can be combined as

ara _r2 _r-
(c.5e)

and

\_ a, j + a,, a, =_ \, a_)" (c.s7)

Following these substitutions, we csxry out the differentiation with respect to s, integrate,

mad combine terms to get

•
2 acf

- 2-_coM;_oo_ooA 0 [ cPY-_l"dyJ oy

(a +- 2_ _ A t P
Y_,'_-y-yY

[(- 1+2_----_+p _j _ )JA o

Jr u°°AoA ! r2¢P---_!-r_ "{-"_'P 20¢P (c.s8)

The outer integralsin (3.71)can be writtenas

I
O n ' "1 r

W'#

fn

(c.sg)

This equation, as indicated in (C.58), contains six integrals that are products of powers of

Y' H(1)'n Hn(z),'^ and/or the derivative of H (1).n They are solvable in their indefinite integral

form using standard integration techniques, using integral equations given in Luke [1962],

and using appropriate Wronskian equations for Hankel Functions given in Watson [1966].
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After the limits of integrationareappliedand terns combined, (C.59) takes on the form

(c.60)

where F 0 is defined in (3.72), D 0 is define in (3.54), and

(C.61)

H )(i_l'rn), j:2,

I, j=2_J2= O, j_2,

and derivatives are evaluated at r
_n
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The final equation we develop is the differential equation for A 0 shown in (3.76).

Substituting values into (3.74), we get

7"

{E )Pvowe_ Y+ _ Oy j iRv + i---'v" - wRP - n R01]y w - aRu ¢_ dY + Ii = O"
0 w

(c.62)
It is simpler to use the eigenfunction form of the disturbance variables, left side of (C.44)

to (C.47), in (C.62). Thus, we write (3.65) to (3.68) as

t mh_

R v = AoRvo - Aou_ 1
I__ IO

R w = AoRwo - AoUC 1

'[<R u = AoRuo -A 0 +

r]-- - uCI + CAOR_ A0

(C.63)

(C.64)

(C.6S)

(C.66)

where

= ___ o_-
RvO - 1 Or Os --CI_ (C.67)

-_ -___1 (c_)
RwO=-Vl Or -u Os 1 r

_ oC _a_,_cm ___[_ o_
Ruo = -Vl--_-r - UT's-s 1 _ _ Os _ L I Or + g_-]s (C.69)

= -M._ 1 ^ - - (C.70)RpO , Or , Os Os _r (rvl)+ "

From (C.61), we can write
!

I I = AO/IO- A040 (C.71)

where I10 and 40 caa be determined from (C.61).Now, substituting(C.63) to (C.66)
l

and (C.71) into (C.62) and identifying tems m_tiplying A 0 and A0, we get

A'0S3+AOI__: o (c.72)

where



- _o

and

r

q = poo'%o _ + _ iR.o
0 w
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(c.73)

+_°R_°o,,-_R_o- "-R_wo- °R,,o}_I'd,,+%
(c.v4)
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CONTOUR DIFFERENCING

Finite differencing equation (3.92) around a damped critical point alters the form

of the difference equation. Whether the contour is for a normal velocity profile, illustrated

in Figure D.l(a), or for an inverted velocity profile, illustrated in Figure D.l(b), the

contour consists of seven basic finite difference computational molecules. These are

shown in Figure D.2. The general finite difference equation for the central point of each
molecule is

C2Pk.p1 - B2P k -I- A2Pk_ 1 + ClPk+ 1 - BlP k - AIPk_ 1

D 2 Zlk D 1
+ Zo: k = o

where Zlk and ZOk are given in (3.93). Letting z - At, the grid spacing in the real axis

direction, and y = iAri, the grid spacing in the imaginary axis direction, the constants

for each molecule are easily determined and given as follows:

Molecule 1:

Molecule 2:

A 1 = 1 B 1 = 0 C:[ = I D 1 = 2z

2
A 2 = 1 B 2 = 2 C 2 = 1 D 2 = z

Molecule 3:

2
AI=Y

A 2 =Y

B1 =z2-y2 C1 =z2

B2=z+Y C2=:z

D 1 = zy(z + y)

1

D2= - xzl(x+

A 1 = 1 B 1 = 0 C]. = 1 D 1 = 2y

2
A 2 = 1 B 2 = 2 C:_ = 1 D 2 = y
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Molecule 4:

Molecule 5:

Molecule 6:

Molecule 7:

2 2 2
AI=Z Bl=Y -z

A2 = x B 2 -" z + y

2 2 2
A1 = y B 1 - z - y

A2 _ _y B 2 = z - y

A 1 = 1 B 1 = 0

A 2 = 1 B 2 = 2

2 2 2
Al=Z Bl=Y -z

A 2 -- z B 2 = x - y

2
CI=Y

C 2 "- y

2
CI=Z

CI= 1

C 2 - 1

2
CI=Y

D1 = x_(x + zl)

1
D2 = _xy(x + y)

D1 = -xzl(x - _)

D2= -_y(_- _)

D1 = -2y

2
D2=Y

Dz = -_(_ - ,i)

D 2 = -lzy(x- y)
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